233 resultados para Elementos finitos : Placas : Estruturas
Resumo:
The purpose of this research was tested a finite element model (FEM) that represented the creep of a slab during the reheating process of hot rolling. The aim is to prevent creep phenomenon changing the reheating profile with hot tensile test in Gleeble 3500, and, also, understand the former defect crisis. The goal of this work is to have a predictive tool to optimize the reheating process changing parameters (length and thickness). Then, use input parameters obtained from the tests to approximate the solution of the problem aided by Abaqus CAE. The results have showed that the ferritic stainless steel AISI 409 has a lower sensitivity to creep comparing to the stainless steel AISI 409, AISI 430Ti, AISI 441 and AISI 444
Resumo:
Due to greater productivity in the auto industry and the high competition in the current market, employees are required to perform repeated movements and often, with short intervals of rest. This daily exposure causes muscle tension and overloads occasional, thus creating problems and psychosocial stress. Currently companies are concerned with the welfare of the employee, where the main focus is product quality and life of the worker, thus justifying such a study. Therefore , this technical work to assist the master's thesis of graduate student Daniel Rodriguez , was developed with the objective is to analyze , develop, design and construct a coupled to a load cell device simulating a stitcher to be used in an industry the posts stapling upholstery of seats . Are the stages of design and construction detailed in this work and its positive results in relation to the technical part of the study
Resumo:
This work aims to determine the stresses acting on the main beam of a crane to transport steel coils of up to twelve tons. To determine the stress it was made a revision of the knowledge of the mechanics of materials to apply the analytical method. Following a review of the finite element method is made to understand the same. To complete the study it was used the commercial software ANSYS to determine the stresses by finite element method, the program provides images that help to better understand the results obtained. With the results a comparison of the values of the tensions between the two methods (analytical and finite element) was made. To assist in the calculations it was used the NBR 8400, 1984 (Calculation of Lifting Equipment Load)
Resumo:
This work aims to determine the first natural frequency of rotation shaft by using a basic software, Excel, and to compare it to the values obtained in laboratory. When an axle is submitted to a rotation, depending on the rotational frequency used, the axle can enter a state of resonance, in which the amplitude of vibration becomes rather high. The frequencies in which the resonance is observed depends on several parameters of the axle, including the number of concentrated masses associated to the axle. Thus, to obtain a computer program of easy use and access, which can preview the frequency of resonance of an axle in rotation with ‘n’ numbers of concentrated masses it has been studied how the frequency varies with each of these parameters. The computer program and the analyses have been made using the Rayleigh Method, which allowed the transformation of a continuous system to discrete through the theory of finite elements, which has proved that, the bigger the number of divisions of the shaft taken into consideration in the calculus of the natural frequency, the more this value gets close to the real value. The results obtained have been considered satisfactory once these have gotten close to the theoretical results expected
Resumo:
This work is to analyze the behavior of context concentrated stresses generated around a nozzle connected to a pressure vessel. For this analysis we used the finite element method via a computer interface, the software ANSYS WORKBENCH. It was first necessary to study and intensive training of the software used, and also a study of the ASME Code, Section VIII, which is responsible for the standards used in pressure vessels. We analyzed three cases, which differ primarily in the variation of the diameter of the nozzle in order to analyze the variation of the stresses according to the variation of the diameters. The nozzle diameters were 35, 75 and 105 mm. After the model designed vessel, a pressure was applied on the innervessel of 0.5 MPa. For the smallest diameter, was found the lowest tensions concentrated. Varying between 1 and 223 MPa. Increasing the diameter of the nozzle resulted in increased tensions concentrated around the junction nozzle /vessel. The maximum stresses increased by 78% when the value was increased in diameter from 35 to 75 mm. Since the increase in diameter from 75 to 105 mm, the values of the tensions increased around 43%. These figures emphasize that stress concentrations increased with increasing the diameter of the nozzles, but not linearly
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
This work aims the design and analysis of a thrust frame system for a liquid fuel rocket engine. The project was developed following the design requirements established by the Division of Space Propulsion of the Institute of Aeronautics and Space. The layout of the structure was developed with the aid of a software of 3D modeling and static and dynamic analysis were performed by using a finite element package. The results of the analyzes helped in defining the layout of the structure which met all design requirements. The safety factor and the mass achieved were comfortably low, which may be useful in the future because the liquid fuel rocket engine is still in development
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Pós-graduação em Engenharia Mecânica - FEB
Resumo:
The present work aims to study the possible causes of cracks founded and recovered in translation cars of ore Forklift / ore Reclaimer. To identify the possible causes of cracks observed on the equipment it was used a static approach analysis, using a finite element method as an analysis tool, using a specific structural analysis program. After making the model, a strain gage measurement was necessary because there may be significant amounts of masses of non-structural components that were not modeled and were not available in the drawings, as well as fouling ore. With the calibrated model it was processed analyses with the load cases of dead load, product, wind and excavation. After the processing, it was observed that none of these load cases resulted in values that caused the crack, so another three hypotheses were tested: depression and misalignment, jacking and translation of only three cars. Of these three hypotheses it was observed that the jacking coud be the cause of the cracks, because the distribution of stress. Due to the miss of parameters, like the height utilized in this process, it was not possible to affirm the real stress level
Resumo:
This study aims to structurally evaluate a support of graphite pastille for the lubrication of railway wheels. The proper lubrication of wheel flanges of the railway extends the life of this component, so it is very important that this occurs lubrication to reduce the costs involved in railway maintenance. To prepar the evaluation structural will be used to International Electrotechnical Comission standard (IEC 61373) establishing which load cases should be applied to this component. The applied loads on the support (accordance with IEC) are random accelerations and accelerations due to shocks, thus simulating the conditions that exist along the route of the train. The structural analyzes are performed by the finite element method, with the aid of the Cosmos software. Thus, it is possible to determine the stresses acting on the support, and so the allowable stresses compared with the standard proposed by the AISC. The stress in the structural analyzes are lower than allowable therefore considered for the configuration presented, unexpected structural problems
Resumo:
In this work it was made analysis of a simple pressure vessel, using the analytical development studied in Mechanics of Materials disciplines, and then using the standard required by ASME. Following the simulation was realized using Autodesk Mechanical Simulation software to calculate the principal stresses in a pressure vessel. The simulation was done in a single vessel without nozzles, compared with the analytic calculation. After that, the simulation of another fictitious pressure vessel was done by adding three nozzles to verify the influence of the nozzles in the principal stresses and compared with the analytical results. After the simulation, it was found that the principal are bigger in the pressure vessel with nozzles, but they decrease at a small distance from the nozzle becoming equal to the stresses in the vessel without nozzles. The analytical results calculated according to the ASME agree with simulated results
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Odontologia Restauradora - ICT