228 resultados para Ceramic contexts
Resumo:
Objective. This study aimed to investigate the influence of restoration thickness to the fracture resistance of adhesively bonded Lava (TM) Ultimate CAD/CAM, a Resin Nano Ceramic(RNC), and IPS e. max CAD ceramic.Methods. Polished Lava (TM) Ultimate CAD/CAM (Group L), sandblasted Lava (TM) Ultimate CAD/CAM (Group LS), and sandblasted IPS e.max CAD (Group ES) discs (n=8, phi=10 mm) with a thickness of respectively 0.5 mm, 1.0 mm, 1.5 mm, 2.0 mm, and 3.0 mm were cemented to corresponding epoxy supporting discs, achieving a final thickness of 3.5 mm. All the 120 specimens were loaded with a universal testing machine at a crosshead speed of 1 mm/min. The load (N) at failure was recorded as fracture resistance. The stress distribution for 0.5 mm restorative discs of each group was analyzed by Finite Element Analysis (FEA). The results of facture resistances were analyzed by one-way ANOVA and regression.Results. For the same thickness of testing discs, the fracture resistance of Group L was always significantly lower than the other two groups. The 0.5 mm discs in Group L resulted in the lowest value of 1028 (112) N. There was no significant difference between Group LS and Group ES when the restoration thickness ranged between 1.0 mm and 2.0 mm. There was a linear relation between fracture resistance and restoration thickness in Group L (R = 0.621, P < 0.001) and in Group ES (R = 0.854, P < 0.001). FEA showed a compressive permanent damage in all groups.Significance. The materials tested in this in vitro study with the thickness above 0.5 mm could afford the normal bite force. When Lava Ultimate CAD/CAM is used, sandblasting is suggested to get a better bonding. (C) 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objective. To determine the effects of different aging methods on the degradation and flexural strength of yttria-stabilized tetragonal zirconia (Y-TZP)Methods. Sixty disc-shaped specimens (0, 12 mm; thickness, 1.6 mm) of zirconia (Vita InCeram 2000 YZ Cubes, VITA Zahnfabrik) were prepared (ISO 6872) and randomly divided into five groups, according to the aging procedures (n=10): (C) control; (M) mechanical cycling (15,000,000 cycles/3.8 Hz/200N); (T) thermal cycling (6,000 cycles/5-55 degrees C/30 s); (TM) thermomechanical cycling (1,200,000 cycles/3.8 Hz/200N with temperature range from 5 C to 55 C for 60s each); (AUT) 12h in autoclave at 134 degrees C/2 bars; and (STO) storage in distilled water (37 degrees C/400 days). After the aging procedures, the monoclinic phase percentages were evaluated by X-ray diffraction (XRD), and topographic surface analysis was performed by 3D profilometry. The specimens were then subjected to biaxial flexure testing (1 mm/min, load 100 kgf, in water). The biaxial flexural strength data (MPa) were analyzed by 1-way ANOVA and Tukey's test (alpha = 0.05). The data for monoclinic phase percentage and profilometry (Ra) were analyzed by Kruskal-Wallis and Dunn's tests.Results. ANOVA revealed that flexural strength was affected by the aging procedures (p = 0.002). The M (781.6 MPa) and TM (771.3 MPa) groups presented lower values of flexural strength than did C (955 MPa), AUT (955.8 MPa), T (960.8 MPa) and STO (910.4 MPa). The monoclinic phase percentage was significantly higher only for STO (12.22%) and AUT (29.97%) when compared with that of the control group (Kruskal-Wallis test, p = 0.004). In addition, the surface roughnesses were similar among the groups (p = 0.165).Signcance. Water storage for 400 days and autoclave aging procedures induced higher phase transformation from tetragonal to monoclinic; however, they did not affect the flexural strength of Y-TZP ceramic, which decreased only after mechanical and thermomechanical cycling. (C) 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this study, the physicochemical characteristics of calcium phosphate based bioactive ceramics of different compositions and blends presenting similar micro/nanoporosity and micrometer scale surface texture were characterized and evaluated in an in vivo model. Prior to the animal experiment, the porosity, surface area, particle size distribution, phase quantification, and dissolution of the materials tested were evaluated. The bone regenerative properties of the materials were evaluated using a rabbit calvaria model. After 2, 4, and 8 weeks, the animals were sacrificed and all samples were subjected to histologic observation and histomorphometric analysis. The material characterization showed that all materials tested presented variation in particle size, porosity and composition with different degrees of HA/TCP/lower stoichiometry phase ratios. Histologically, the calvarial defects presented temporal bone filling suggesting that all material groups were biocompatible and osteoconductive. Among the different materials tested, there were significant differences found in the amount of bone formation as a function of time. At 8 weeks, the micro/nanoporous material presenting similar to 55,TCP:45%,HA composition ratio presented higher amounts of new bone regeneration relative to other blends and a decrease in the amount of soft tissue infiltration. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Purpose: This study aimed to investigate the influence of ceramic thickness and shade on the Knoop hardness and dynamic elastic modulus of a dual-cured resin cement.Materials and Methods: Six ceramic shades (Bleaching, A1, A2, A3, A3.5, B3) and two ceramic thicknesses (1 mm, 3 mm) were evaluated. Disk specimens (diameter: 7 mm; thickness: 2 mm) of the resin cement were light cured under a ceramic block. Light-cured specimens without the ceramic block at distances of 1 and 3mm were also produced. The Knoop hardness number (KHN), density, and dynamic Young's moduli were determined. Statistical analysis was conducted using ANOVA and a Tukey B rank order test (p = 0.05).Results: The bleaching 1-mm-thick group exhibited significantly higher dynamic Young's modulus. Lower dynamic Young's moduli were observed for the 3-mm-thick ceramic groups compared to bleaching 3-mm-thick group, and no difference was found among the other 3-mm groups. For the KHN, when A3.5 3-mm-thick was used, the KHN was significantly lower than bleaching and A1 1-mm-thick ceramic; however, no difference was exhibited between the thicknesses of the same shade.Conclusions: The dual-cured resin cement studied irradiated through the 1-mm-thick ceramic with the lightest shade (bleaching ceramic) exhibited a better elastic modulus, and there was no effect in KHN of the resin cement when light cured under different ceramic shades and thicknesses (1 and 3 mm), except when the A3.5 3-mm-thick ceramic was used.Clinical Significance: Variolink II irradiated through ceramic with the lowest chroma exhibited the highest elastic modulus; therefore, the light activation method might not be the same for all clinical situations.
Resumo:
The fracture of porcelain structures have been related in either natural dentition or implant-supported restorations. Techniques using a composite resin or indirect methods can be used. This article presents a porcelain fracture on implant-supported metal-ceramic restoration. IPS Empress e.max laminate veneer restoration was used to repair the fracture. With this technique, it was possible to restore aesthetics and function, combined with low cost and patient satisfaction.
Resumo:
Purpose: To evaluate the survival rate, success rate, load to fracture, and finite element analysis (FEA) of maxillary central incisors and canines restored using ceramic veneers and varying preparation designs.Methods and Materials: Thirty human maxillary central incisors and 30 canines were allocated to the following four groups (n=15) based on the preparation design and type of tooth: Gr1 = central incisor with a conservative preparation; Gr2 = central incisor with a conventional preparation with palatal chamfer; Gr3 = canine with a conservative preparation; Gr4 = canine with a conventional preparation with palatal chamfer. Ceramic veneers (lithium disilicate) were fabricated and adhesively cemented (Variolink Veneer). The specimens were subjected to 4 x 106 mechanical cycles and evaluated at every 500,000 cycles to detect failures. Specimens that survived were subjected to a load to fracture test. Bidimensional models were modeled (Rhinoceros 4.0) and evaluated (MSC.Patrans 2005r2 and MSC.Marc 2005r2) on the basis of their maximum principal stress (MPS) values. Survival rate values were analyzed using the Kaplan-Meier test (alpha = 0.05) and load to fracture values were analyzed using the Student t-test (alpha = 0.05).Results: All groups showed 100% survival rates. The Student t-test did not show any difference between the groups for load to fracture. FEA showed higher MPS values in the specimens restored using veneers with conventional preparation design with palatal chamfer.Conclusion: Preparation design did not affect the fracture load of canines and central incisors, but the veneers with conventional preparation design with palatal chamfer exhibited a tendency to generate higher MPS values.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Lead zirconate titanate, with Zr/Ti ratio of 53/47 was prepared by the polymeric precursor method. It was investigated the barium (II) modification at 0.0, 0.2, 0.4 and 0.6 mol% in substitution to the lead (II) cation in A site of perovskite structure. The powder samples were characterized by XRD and the diffraction patterns were used to Rietveld refinement. The percentages of tetragonal and rhombohedral phases and a systematic study of the effect of barium (II) on the morphology and the dielectric properties of PZT were carried out. The results showed that the tetragonal phase is favored and the ceramic density is improved with the barium (II) insertion. The Curie temperature (Tc) is increased besides the slight reduction of dielectric constant (Kc).
Resumo:
A Photocatalyst ceramic powder that presented high photoactivity based on TiO2 modified with 25% molar of SnO2 and up to 5% molar of Ag2O was obtained in the present work. The aforementioned ceramic powder was obtained using all commercial oxides as well as the oxides mixture technique. The powders were ground in high energy mill for one hour with subsequent thermal treatment at 400°C for four hours. They were, furthermore, characterized using surface area of around 6m2/g, where the X-Ray diffraction results provided evidence for the presence of anatase and rutile phases, known to be typical characteristics of both the TiO2 and SnO2 used. During the thermal treatment, Ag2O was reduced to metallic silver. The photodegradation rehearsals were carried out using a 0.01 mmol/L Rhodamine B solution in a 100mg/L photocatalyst suspension in a 500ml beaker, which was irradiated with 4W germicide Ultraviolet light of 254nm. In addition, samples were removed after duration of about 10 minutes to an hour, where they were analyzed thoroughly in UV-vis spectrophotometer. The analysis of the results indicated that for the compositions up to 2.5% molar of Ag2O, the photoactivity was found to be greater than that of Degussa P25 photocatalyst powder, and as such it was then used as a reference. Taking into account 90% degradation of Rhodamine B, a duration period of 11 minutes was obtained for the developed photocatalyst powder compared to the 38 minutes observed for the Degussa P25. FEG-SEM micrographies enabled the verification of the morphology as well as the interaction of the oxide particles with the metallic silver, which led us to propose a model for the increase in photoactivity observed in the photocatalyst powder under investigation.
Resumo:
To evaluate the effect of grinding and airborne-particle abrasion on the biaxial flexural strength (BFS) and phase transformation of a Y-TZP ceramic, and examine whether sintering the veneering porcelain renders the previous heat treatment recommended by the manufacturer unnecessary. Materials and Methods: Lava zirconia specimens (N = 108) were obtained with the following dimensions: 14.0 mm diameter × 1.3 mm thickness (n = 36) and 14.0 mm × 1.6 mm (n = 72). The thicker specimens were ground with diamond burs under irrigation and received (heat-treated groups) or not (non-heat-treated groups) a heat treatment (1000°C for 30 min) prior to the four firing cycles applied to simulate the sintering of the veneering porcelain. All specimens were air abraded as follows (n = 12): 1) 30-μm silica-modified Al2O3 particles (Rocatec Soft); 2) 110-μm silica-modified Al2O3 particles (Rocatec Plus); and 3) 120-μm Al2O3 particles, followed by Rocatec Plus. Three specimens of each group were analyzed by x-ray diffraction (XRD) to assess the monoclinic phase content (%). The BFS test was performed in a mechanical testing machine (Instron 8874). Data (MPa) were analyzed by two-way ANOVA (grinding × airborne-particle abrasion and heat treatment × airborne-particle abrasion) and Tukey's post-hoc test (α = 0.05). The strength reliability was analyzed using the Weibull distribution. Results: Grinding significantly decreased the BFS of the non-heat-treated groups (p < 0.01). Within the ground groups, the previous heat treatment did not influence the BFS (p > 0.05). Air abrasion only influenced the BFS of the ground/heat-treated groups (p < 0.01). For the non-heat-treated groups, the grinding did not decrease the Weibull modulus (m), but it did decrease the characteristic strength (σ0). For Rocatec Soft and 120-μm Al2O3 particles + Rocatec Plus, the heat-treated groups presented lower m and higher σ0 than the ground/non-heat-treated groups. The independent variables did not seem to influence phase transformation. Air-abraded surfaces presented higher monoclinic zirconia content than the as-sintered and ground surfaces, which exhibited similar content. Conclusion: Even under irrigation, grinding compromised the Y-TZP ceramic strength. The sintering of the veneering porcelain rendered the previous heat treatment recommended by the manufacturer unnecessary. Airborneparticle abrasion influenced the strength of heat-treated zirconia.
Resumo:
To evaluate the effect of grinding and airborne-particle abrasion on the biaxial flexural strength (BFS) and phase transformation of a Y-TZP ceramic, and examine whether sintering the veneering porcelain renders the previous heat treatment recommended by the manufacturer unnecessary. Materials and Methods: Lava zirconia specimens (N = 108) were obtained with the following dimensions: 14.0 mm diameter × 1.3 mm thickness (n = 36) and 14.0 mm × 1.6 mm (n = 72). The thicker specimens were ground with diamond burs under irrigation and received (heat-treated groups) or not (non-heat-treated groups) a heat treatment (1000°C for 30 min) prior to the four firing cycles applied to simulate the sintering of the veneering porcelain. All specimens were air abraded as follows (n = 12): 1) 30-μm silica-modified Al2O3 particles (Rocatec Soft); 2) 110-μm silica-modified Al2O3 particles (Rocatec Plus); and 3) 120-μm Al2O3 particles, followed by Rocatec Plus. Three specimens of each group were analyzed by x-ray diffraction (XRD) to assess the monoclinic phase content (%). The BFS test was performed in a mechanical testing machine (Instron 8874). Data (MPa) were analyzed by two-way ANOVA (grinding × airborne-particle abrasion and heat treatment × airborne-particle abrasion) and Tukey's post-hoc test (α = 0.05). The strength reliability was analyzed using the Weibull distribution. Results: Grinding significantly decreased the BFS of the non-heat-treated groups (p < 0.01). Within the ground groups, the previous heat treatment did not influence the BFS (p > 0.05). Air abrasion only influenced the BFS of the ground/heat-treated groups (p < 0.01). For the non-heat-treated groups, the grinding did not decrease the Weibull modulus (m), but it did decrease the characteristic strength (σ0). For Rocatec Soft and 120-μm Al2O3 particles + Rocatec Plus, the heat-treated groups presented lower m and higher σ0 than the ground/non-heat-treated groups. The independent variables did not seem to influence phase transformation. Air-abraded surfaces presented higher monoclinic zirconia content than the as-sintered and ground surfaces, which exhibited similar content. Conclusion: Even under irrigation, grinding compromised the Y-TZP ceramic strength. The sintering of the veneering porcelain rendered the previous heat treatment recommended by the manufacturer unnecessary. Airborneparticle abrasion influenced the strength of heat-treated zirconia.