449 resultados para Carlos Eduardo Maldonado
Resumo:
Statement of problem. Highly polished enamel surfaces arc recommended for axial tooth surfaces that will serve as guiding planes and be contacted by component parts of a removable partial denture. There is little evidence to support the assumption that this tooth modification will provide accurate adaptation of the framework and prevent build-up of plaque.Purpose. The aim of this investigation was to evaluate the surface roughness of the tooth enamel, prepared to serve as guiding planes, with different polishing systems.Material and methods. Four different methods (designated A, B, C, and D) for finishing and polishing the prepared enamel surfaces of 20 freshly extracted third molar teeth were studied. Each method involved 3, 4, or 5 different steps. The roughness of each specimen was measured at the start of each method before recontouring, after recontouring, and after each step of the 4 finishing and polishing procedures. The 4 experimental finishing methods were applied after recontouring the axial surfaces (buccal, lingual, and proxinial) of each tooth. Thus the 20 teeth (60 surfaces) were finished and polished by use of 1 of the experimental methods. Surface roughness was measured with a profilometer (mum); the readings of the unpolished enamel Surfaces were recorded as control measurements. Results were statistically analyzed with one-way analysis of variance followed by Tukey's test at the 95% level of confidence.Results. The highest roughness mean values (14.41 mum to 16.44 mum) were found when the diamond bur was used at a high speed for tooth preparation. A significant decrease in roughness values was observed with the diamond bur at a low speed (P<.05). Analysis of the roughness values revealed that all polishing methods produced surface roughness similar to that of the corresponding control teeth.Conclusion. Within the limitations of this study, all finishing procedures tested effectively promoted an enamel surface similar to the original unpolished enamel.
Resumo:
Acrylic resins are widely used in the fabrication of denture bases and have been shown to be cytotoxic as a result of substances that leach from the resin. The primary eluate is residual monomer. Numerous reports suggest that residual monomer may be responsible for mucosal irritation and sensitization of tissues. This information is important, not only to assess the biologic effects of such materials, but also to enable a comparison among the different polymerization methods, thus assisting the clinician in selecting a material with minimal cytotoxicity. This article reviews the literature published from 1973 to 2000, selected by use of a Medline search, associated with cytotoxic effects usually ascribed to acrylic denture base materials.
Resumo:
Objective: the purpose of this study was to evaluate the effect of two post-polymerisation treatments and different cycles of polymerisation on the cytotoxicity of two denture base resins.Materials and methods: the resins tested were Lucitone 550 and QC 20. Discs of resins were fabricated following the manufacturer's instructions. Lucitone 550 was processed by long cycle or short cycle. The resin QC 20 was processed by reverse cycle or normal cycle. The specimens were divided into groups: (i) post-polymerised in microwave for 3 min at 500 W; (ii) post-polymerised in water-bath at 55 degrees C for 60 min and (iii) without post-polymerisation. Eluates were prepared by placing three discs into a sterile glass vial with 9 ml of Eagle's medium and incubated at 37 degrees C for 24 hours. L929 cells were seeded into 96 3 well culture plates and DNA synthesis was assessed by H-thymidine incorporation assay.Results: the results were submitted to two-way ANOVA and Tukey HSD test. QC 20 specimens polymerised by the normal cycle and submitted to microwave post-polymerisation were graded as moderately cytotoxic. Similar results were observed for Lucitone 550 processed by long cycle without post-polymerisation. The other experimental groups were graded as not cytotoxic. After water-bath post-polymerisation, specimens of Lucitone 550 processed by long cycle produced significantly lower inhibition of DNA synthesis than the other groups.Conclusion: the long cycle increased the cytotoxicity of Lucitone 550 and water-bath post-polymerisation reduced the cytotoxicity of Lucitone 550 processed by long cycle.
Resumo:
Objectives. This study compared the residual monomer (RM) in four hard chair-side reline resins (Duraliner II-D, Kooliner-K, Tokuso Rebase Fast-TRF and Ufi Gel hard-UGH) and one heat-polymerized denture base resin (Lucitone 550-L), which was processed using two polymerization cycles (short-LS and long-LL). It was also investigated the effect of two after polymerization treatments on this RM content.Methods. Specimens (n = 18) of each material were produced following the manufacturers' instructions and then divided into three groups. Group I specimens were left untreated (GI-control). Specimens of group II (GII) were given post-polymerization treatment by microwave irradiation. In group III (GIII), specimens were submitted to immersion in water at 55 degrees C (reline resins-10 min; denture base resin L-60min). The RM was analyzed using high performance liquid chromatography (HPLC) and expressed as a percentage of RM. Data were analyzed by two-way ANOVA followed by Tukey's test (alpha = 0.05).Results. Comparing control specimens, statistical differences were found among all materials (p < 0.05), and the results can be arranged as K (1.52%) > D (0.85%) > UGH (0.45%) > LL (0.24%) > TRF (0.14%) > LS (0.08%). Immersion in hot water (GIII) promoted a significant (p < 0.05) reduction in the RM for all materials evaluated compared to control (GI), with the exception of LL specimens. Materials K, UGH and TRF exhibited significantly (p < 0.05) lower values of RM after microwave irradiation (GII) than in the control specimens.Significance. The reduction in RM promoted by water-bath and microwave post-polymerization treatments could improve the mechanical properties and biocompatibility of the relining and denture base materials. (c) 2006 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
This investigation evaluated the effectiveness of an infection control protocol for cleansing and disinfecting removable dental prostheses. Sixty-four dentures were rubbed with sterile cotton swab immediately after they had been taken from patients' mouths. Samples were individually placed in the culture medium and immediately incubated at 37 +/- 2 degreesC. The dentures were scrubbed for 1 min with 4% chlorhexidine, rinsed for 1 min in sterile water and placed for 10 min in one of the following immersion solutions: 4% chlorhexidine gluconate, 1% sodium hypochlorite, Biocide (iodophors) and Amosan (alkaline peroxide). After the disinfection procedures, the dentures were immersed in sterile water for 3 min, reswabbed and the samples were incubated. All samples obtained in the initial culture were contaminated with micro-organisms. All the lower dentures immersed in Biocide showed positive growth, and the upper dentures were positive for growth in six of eight dentures. The 4% chlorhexidine gluconate, 1% sodium hypochlorite and Amosan solutions have been proved effective to reduce the growth of the micro-organisms in the 10 min immersion period. The protocol evaluated in this study seems to be a viable method to prevent cross-contamination between dental personnel and patients.
Resumo:
A method is presented in which light-polymerized composite material is used to obtain retention for a removable partial denture when usable natural tooth undercuts are unavailable. The desired contour is waxed on a diagnostic cast with the use of a surveyor, captured in a light-polymerizing temporary restorative material, and reproduced in composite resin on the abutment teeth.
Resumo:
The disinfection of dental prostheses by immersion in a chemical solution should be capable of rapid inactivation of pathogenic microorganisms, without causing any adverse effect on the denture base resins. This study evaluated the effect of disinfection immersion on the transverse strength of two heat-cured resins. The denture base resins (Lucitone 550 and QC 20) were polymerized according to the manufacturers' instructions. After polymerization, the specimens were polished, and then stored in water at 37 degreesC for 50 +/- 2 h prior immersion in one of the following solutions for 10 min: 4% chlorhexidine, 1% sodium hypochlorite and 3.78% sodium perborate. The specimens were submitted to disinfection twice, simulating when dentures come from the patient and before being returned to the patient. Ten specimens were made for each group. The transverse strength was evaluated by a 3-point bend test. The flexural strength of the two denture base acrylic resins evaluated remained unaffected after immersion in the three solutions evaluated. In general, the QC 20 resin specimens exhibited lower transverse strength than the Lucitone 550 resin specimens, regardless of immersion solutions.
Resumo:
The aim of this study was to evaluate the effect of ageing in distilled water on the hardness and compressive strength of a direct composite resin Z100, a feldspatic porcelain (Noritake) and three indirect composites (Artglass, Solidex and Targis). For the Vickers hardness tests, five disk-shaped specimens (2 x 4 mm) of each material were prepared according to the manufacturers' instructions. The hardness tests were conducted using a Vickers diamond indentor. Compressive strength measurements were recorded on cylindrical specimens with a diameter of 6 mm and a length of 12 mm. The compression tests were carried out with a constant cross-head speed of 0.5 mm min(-1) on a mechanical test machine. For each material, 10 specimens were tested after 7 days of dry storage at 37 +/- 1 degreesC and 10 specimens were tested after water storage at 37 +/- 1 degreesC for 180 days. Noritake porcelain specimens showed higher hardness values than the composites. Among the composite materials, Z100 promoted the highest VHN values, regardless of the ageing periods. The results showed that Solidex and Z100 had the highest compressive strength values. Ageing in water reduced the hardness for all composites, but had no long-term effect on the compressive strength.