520 resultados para specific leaf area
Resumo:
This work was carried out in a protected environment at São Paulo State University (UNESP) Sao Manuel Experimental Farm, College of Agronomical Sciences, Sao Manuel Municipality, São Paulo State, Brazil. The local soil was red-yellow sandy-phase latosol. The following development stages for transplanting were evaluated: seedlings presenting 5 to 6 definitive leaves, in full flowering and beginning of fruiting. Momotaro T-93 hybrid tomato (Lycopersicon esculentum Mill.) was grown on two rootstocks, the hybrids Anchor T and Kaguemusha, and in non-grafted ones. Evaluations included leaf area, seedling length, seedling dry matter at the moment of the transplant, total number of leaves per plant, fresh and dry matter of leaves below the third inflorescence, fruit classification according to diameter, and total fruit production until the eighth bunch. Non-grafted plants transplanted when they presented 5 to 6 definitive leaves had the highest mean fruit production and diameter. As regards grafted plants, no difference was detected concerning productivity and final quality when seedlings were in the stages from 5 to 6 definitive leaves until full flowering, and the rootstock Anchor T presented the best development.
Resumo:
center dot Background and Aims Drought is a major environmental constraint affecting growth and production of Coffea canephora. Selection of C. canephora clones has been largely empirical as little is known about how clones respond physiologically to drought. Using clones previously shown to differ in drought tolerance, this study aimed to identify the extent of variation of water use and the mechanisms responsible, particularly those associated morphological traits.center dot Methods Clones (14 and 120, drought-tolerant; 46 and 109A, drought-sensitive, based on their abilities to yield under drought) were grown in 120-L pots until they were 12-months old, when an irrigation and a drought treatment were applied; plants were droughted until the pressure potential (Psi(x)) before dawn (pre-dawn) reached -3.0 MPa. Throughout the drought period, Psi(x) and stomatal conductance (g(s)) were measured. At the end of the experiment, carbon isotope ratio and parameters from pressure-volume curves were estimated. Morphological traits were also assessed.center dot Key Results and Conclusions With irrigation, plant hydraulic conductance (K-L), midday Psi(x) and total biomass were all greater in clones 109A and 120 than in the other clones. Root mass to leaf area ratio was larger in clone 109A than in the others, whereas rooting depth was greater in drought-tolerant than in drought-sensitive clones. Predawn Psi(x) of -3.0 MPa was reached fastest by 109A, followed progressively by clones 46, 120 and 14. Decreases in g(s) with declining Psi(x), or increasing evaporative demand, were similar for clones 14, 46, and 120, but lower in 109A. Carbon isotope ratio increased under drought; however, it was lower in 109A than in other clones. For all clones, Psi(x), g(s) and KL recovered rapidly following re-watering. Differences in root depth, KL and stomatal control of water use, but not osmotic or elastic adjustments, largely explained the differences in relative tolerance to drought stress of clones 14 and 120 compared with clones 46 and 109A.
Resumo:
1 Fragmentation severely alters physical conditions in forest understories, but few studies have connected these changes to demographic impacts on forest species using detailed experimental examination at the individual and population levels.2 Using a 32-month, reciprocal-transplant experiment, we show that individuals of the Amazonian understory herb Heliconia acuminata transplanted into forest fragments lost over 20% of their vegetative shoots, while those transplanted to continuous forest showed a slight gain. The leaf area of plants in fragments also increased at half the rate it did in continuous forest sites.3 It appears that the normal dry season stresses to which forest understorey plants are exposed are greatly exacerbated in fragments, causing plants to shed shoots and leaves.4 the observed shifts in size could help explain why populations in fragments are more skewed towards smaller demographic stage classes than those in continuous forest. These shifts in size structure could also result in reduced abundances of flowering plants, as reproduction in H. acuminata is positively correlated with shoot number.5 Fragmentation-related changes in growth rates resulting from abiotic stress may have significant demographic consequences.
Resumo:
Estudou-se, sob condições de casa de vegetação, o efeito da aplicação de reguladores e estimulantes vegetais no desenvolvimento do milho cultivar Cargill -525. Os reguladores e estimulantes utilizados foram: giberelina 100 ppm, ethephon 600 ppm, Agrostemin 0,8 g/l e Triacontanol 0,5 mg/l; aplicados por pulverização 34 dias após a semeadura, além do controle, foram determinados os parâmetros relativos a altura da planta, número de folhas, área foliar e peso da materia seca de raiz, caule e folhas. A partir dos dados de área foliar e peso da matéria seca total obtidos em 4coletas realizadas com intervalos de 14 dias, foram calculadas a taxa assimilatória líquida (TAL), taxa de crescimento relativo (TCR) e razão de área foliar (RAF). Giberelina 100 ppm aumentou inicialmente a altura das plantas de milho, sendo que ethephon 600 ppm reduziu a altura média do milho. 0 número de folhas foi diminuído nas plantas tratadas com giberelina, tendendo a aumentar no tratamento com ethephon. Giberelina reduziu o peso da matéria seca das plantas de milho, sendo que ethephon incrementou o peso de raízes, colmo e folhos. Triacontanol promoveu redução na TAL e na TCR do milho 'Cargill - 525' . Giberelina e ethephon tenderam a diminuir a RAF das plantas de Zea mays L.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Nanocrystalline Al(2)O(3)powders have been synthesized by the polymeric precursor method. A study of the evolution of crystalline phases of obtained powders was accomplished through X-ray diffraction, micro-Raman spectroscopy and refinement of the structures through the Rietveld method. The results obtained allow the identification of three steps on the gamma-Al2O3 to alpha-Al2O3 phase transition. The single-phase alpha-Al2O3 Powder was obtained after heat-treatment at 1050 degrees C for 2 h. A study of the morphology of the particles was accomplished through measures of crystallite size, specific surface area and transmission electronic microscopy. The particle size is closely related to gamma-Al2O3 to alpha-Al2O3 phase transition. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Zirconia-based ceramics that retain their metastable tetragonal phase at room temperature are widely studied due to their excellent mechanical and electrical properties. When these materials are prepared from precursor nanopowders with high specific surface areas, this phase is retained in dense ceramic bodies. In this work, we present a morphological study of nanocrystalline ZrO2-2.8 mol% Y2O3 powders synthesized by the gel-combustion method, using different organic fuels - alanine, glycine, lysine and citric acid - and calcined at temperatures ranging from 873 to 1173 K. The nanopore structures were investigated by small-angle X-ray scattering. The experimental results indicate that nanopores in samples prepared with alanine, glycine and lysine have an essentially single-mode volume distribution for calcination temperatures up to 1073 K, while those calcined at 1173 K exhibit a more complex and wider volume distribution. The volume-weighted average of the nanopore radii monotonically increases with increasing calcination temperature. The samples prepared with citric acid exhibit a size distribution much wider than the others. The Brunauer-Emmett-Teller technique was used to determine specific surface area and X-ray diffraction, environmental scanning electron microscopy and transmission electron microscopy were also employed for a complete characterization of the samples.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This letter reports the synthesis of CuO urchin-nanostructures by a simple and novel hydrothermal microwave method. The formation and growth of urchin-nanostructures is mainly affected by the addition of polyethylene glycol (PEG). The hierarchical malachite particles are uniform spheres with a diameter of 0.7-1.9 mu m. CuO urchin-nano structures were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FEG-SEM) and nitrogen adsorption (BET). The specific surface area of the CuO nanostructured microspheres was about 170.5 m(2)/g. A possible mechanism for the formation of such CuO urchin-nanostructures is proposed. (c) 2007 Elsevier Ltd. All rights reserved.
Morphological and physiological responses of Cedrela Fissilis Vellozo (Meliaceae) seedlings to light
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Estudou-se a variação diurna da transpiração de quatro porta -enxertos de citros, durante 12 horas, em intervalos de 60 minutos, pelo método das pesagens. Verificou-se que não ocorreu diferenças estatísticas na marcha diária da transpiração, entre Poncirus trifoliata, Citrus aurantium (laranja Azeda), Citrus sinensis (laranja Caipira) e Citrus limonia (limão Cravo). O limoeiro Cravo mostrou, nas condições estudadas, área foliar superior à Poncirus, laranja Azeda e laranja Caipira. Observou-se ainda uma correlação positiva entre a área foliar e a transpiração dos quatro porta-enxertos de citros.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)