187 resultados para larvae rearing
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study was focused on the predation upon microcrustaceans by an invertebrate predator (chaoborid larvae), and vertebrate predators (fish), in two small reservoirs in southeastern Brazil, with and without macrophytes, in two climatic periods (dry and rainy seasons). Chaoborus larvae were sampled in the limnetic zone, as they are scarce in the littoral, and fish in both limnetic and littoral zones. Their diets were evaluated by the analysis of the crop (chaoborid) or stomach contents (fish). Chaoborid larvae consumed the dinoflagellate Peridinium sp. or other algae, rotifers, and planktonic microcrustaceans. The fish species that included microcrustaceans in their diets were juveniles caught in the littoral. Aquatic insects, plant fragments, and detritus were their major dietary items, microcrustaceans representing a minor item. Planktonic copepods contributed more to the diet of chaoborid larvae than planktonic cladocerans. Fish preyed on planktonic microcrustaceans, as well as on benthic and macrophyte-associated species. Microcrustaceans were not heavily preyed on by chaoborid larvae and fish in both reservoirs.
Resumo:
Mithrax hispidus (Herbst, 1790) is a mithracid majoid crab occurring on sand, corals and rocks in waters of the western Atlantic. Larval development consists of two zoeal stages and a megalopa. All larval stages are described in detail based on multiple cultures. Prior to this study, larvae of M hispidus were considered to be different and grouped separately from most other larvae of Mithrax, primarily based on setation. A detailed morphological examination, based on the same specimens used for the first description, revealed that the inclusion of M hispidus in a separate group is not valid as zoeae now fully agree with the morphological characteristics defined for the other group of five Mithrax species, including M. pleuracanthus, M. verrucosus, M. caribbaeus, M. coryphe, and M. forceps. This illustrates the importance of precisely recording morphological details such as setation, which may otherwise lead to incorrect interpretations with regard to perceived taxonomic affinities. A comparison of larvae of the Mithrax -Mithraculus species complex does not support separation into two genera. Larval evidence supports the recently suggested adult-based synonymization of M caribbaeus with M. hispidus.
Resumo:
Artificial neural networks (ANNs) have been widely applied to the resolution of complex biological problems. An important feature of neural models is that their implementation is not precluded by the theoretical distribution shape of the data used. Frequently, the performance of ANNs over linear or non-linear regression-based statistical methods is deemed to be significantly superior if suitable sample sizes are provided, especially in multidimensional and non-linear processes. The current work was aimed at utilising three well-known neural network methods in order to evaluate whether these models would be able to provide more accurate outcomes in relation to a conventional regression method in pupal weight predictions of Chrysomya megacephala, a species of blowfly (Diptera: Calliphoridae), using larval density (i.e. the initial number of larvae), amount of available food and pupal size as input data. It was possible to notice that the neural networks yielded more accurate performances in comparison with the statistical model (multiple regression). Assessing the three types of networks utilised (Multi-layer Perceptron, Radial Basis Function and Generalised Regression Neural Network), no considerable differences between these models were detected. The superiority of these neural models over a classical statistical method represents an important fact, because more accurate models may clarify several intricate aspects concerning the nutritional ecology of blowflies.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The bronze bug, Thaumastocoris peregrinus, is an important pest affecting Eucalyptus plantations. The egg parasitoid Cleruchoides noackae was introduced in Brazil in 2012 for biological control of this pest. A mass rearing of C. noackae was established at EMBRAPA Florestas. This paper summarizes the main techniques developed to date in order to maximize the production of adult C. noackae. The use of eggs laid on towel paper strips increased the number of emerging parasitoids when compared to cutouts of Eucalyptus leaves. Host eggs 2 days old are preferred by C. noackae over 3- or 4-day-old ovipostures. Eggs can be stored at 5 ºC for 30 days after being parasitized without signifi cant effects on parasitoid emergence; such storage is a convenient strategy. The mean parasitoid emergence varies signifi cantly with the density of host eggs; an increase in the number of host eggs offered reduced the number of parasitoids that emerged. These improvements have played a signifi cant role in the production of C. noackae that has made possible mass release of C. noackae in Brazil and the establishment of natural populations of the parasitoid, as recently confi rmed.