189 resultados para internal P loading
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Influence of morphological variables in photoelastic models with implants submitted to axial loading
Resumo:
Purpose: This study used 12 photoelastics models with different height and thickness to evaluate if the axial loading of 100N on implants changes the morphology of the photoelastic reflection. Methods: For the photoelastic analysis, the models were placed in a reflection polariscope for observation of the isochromatic fringes patterns. The formation of these fringes resulted from an axial load of 100N applied to the midpoint of the healing abutment attached to the implant with 10.0mm x 3.75mm (Conexão, Sistemas de Próteses, Brazil). The tension in each photoelastic model was monitored, photographed and observed using the software Phothoshop 7.0. For qualitative analysis, the area under the implant apex was measured including the green band of the second order fringe of each model using the software Image Tool. After comparison of the areas, the performance generated by each specimen was defined regarding the axial loading. Results: There were alterations in area with different height and thickness of the photoelastic models. It was observed that the group III (30mm in height) presented the smallest area. Conclusion: There was variation in the size of the areas analyzed for different height and thickness of the models and the morphology of the replica may directly influence the result in researches with photoelastic models.
Resumo:
The aim of this study was to evaluate the biomechanical behavior of different implant connection types, by means of three-dimensional finite element analysis. 3 Three-dimensional models were created with a graphic modeling software: SolidWorks 2006 and Rhinoceros 4.0, and InVesalius (CTI, São Paulo, Brasil), the bone was obtained by computerized tomography of a sagittal section of the molar region. The model was composed by bone block with an implant (4 x 10 mm) (Conexão Sistemas de Prótese, São Paulo), with different implant connections: external hex, internal hex and Morse-taper with the corresponding prosthetic component Ucla or Morse-taper abutment. The Three-dimensional models were transferred to finite element software Femap 10.0 (Siemens PLM Software Inc., CA, USA), to generate a mesh, boundary conditions and loading. An axial (200N) and oblique load (100N) was applied on the occlusal surface of the crowns. Analyses were performed using the finite element software NEiNastran 9.0 (Noran Engineering, Inc., USA) and transferred to the Femap 10.0 to obtain the results; after the results were visualized using von Mises stress maps and Maximum stress principal. The results showed the stress distribution was similar between models, with a little superiority of Morse-taper connection. It was concluded that: the three connection types were biomechanical viable; The Morse-taper connection presented the better internal stress distribution; there was not significant biomechanical differences on the bone.
Resumo:
Purpose: The aim of this study was to assess the contributions of some prosthetic parameters such as crown-to-implant (C/I) ratio, retention system, restorative material, and occlusal loading on stress concentrations within a single posterior crown supported by a short implant. Materials and Methods: Computer-aided design software was used to create 32 finite element models of an atrophic posterior partially edentulous mandible with a single external-hexagon implant (5 mm wide × 7 mm long) in the first molar region. Finite element analysis software with a convergence analysis of 5% to mesh refinement was used to evaluate the effects of C/I ratio (1:1; 1.5:1; 2:1, or 2.5:1), prosthetic retention system (cemented or screwed), and restorative material (metal-ceramic or all ceramic). The crowns were loaded with simulated normal or traumatic occlusal forces. The maximum principal stress (σmax) for cortical and cancellous bone and von Mises stress (σvM) for the implant and abutment screw were computed and analyzed. The percent contribution of each variable to the stress concentration was calculated from the sum of squares analysis. Results: Traumatic occlusion and a high C/I ratio increased stress concentrations. The C/I ratio was responsible for 11.45% of the total stress in the cortical bone, whereas occlusal loading contributed 70.92% to the total stress in the implant. The retention system contributed 0.91% of the total stress in the cortical bone. The restorative material was responsible for only 0.09% of the total stress in the cancellous bone. Conclusion: Occlusal loading was the most important stress concentration factor in the finite element model of a single posterior crown supported by a short implant.
Resumo:
PURPOSE: In view of reports in the literature on the benefits achieved with the use of platform switching, described as the use of an implant with a larger diameter than the abutment diameter, the goal being to prevent the (previously) normal bone loss down to the first thread that occurs around most implants, thus enhancing soft tissue aesthetics and stability and the need for implant inclination due to bone anatomy in some cases, the aim of this study was to evaluate bone stress distribution on peri-implant bone, by using three-dimensional finite element analysis to simulate the influence of implants with different abutment angulations (0 and 15 degrees) in platform switching. METHODS: Four mathematical models of an implant-supported central incisor were created with varying abutment angulations: straight abutment (S1 and S2) and angulated abutment at 15 degrees (A1 and A2), submitted to 2 loading conditions (100 N): S1 and A1-oblique loading (45 degrees) and S2 and A2-axial loading, parallel to the long axis of the implant. Maximum (σmax) and minimum (σmin) principal stress values were obtained for cortical and trabecular bone. RESULTS: Models S1 and A1 showed higher σmax in cortical and trabecular bone when compared with S2 and A2. The highest σmax values (in MPa) in the cortical bone were found in S1 (28.5), followed by A1 (25.7), S2 (11.6), and A2 (5.15). For the trabecular bone, the highest σmax values were found in S1 (7.53), followed by A1 (2.87), S2 (2.85), and A2 (1.47). CONCLUSIONS: Implants with straight abutments generated the highest stress values in bone. In addition, this effect was potentiated when the load was applied obliquely.
Resumo:
The study of the parental educative social skills is extremely important for promoting the development and learning of children within interactive situations. The objective of this study was to assess reliability and validity of the Parental Educative Social Skills Interview Script (RE-HSE-P). It was proceeded: a) the test-retest reliability assessment, with a sample of 41 participants assessed in two distinct moments, with an interval of two months and the Cronbach's alpha was calculated; b) 213 parents of preschoolers (n =114) and school age children (n = 98) evaluated their children,were assessed for the construct and discrimination validity studies, differentiated in groups: a) demand for psychological intervention x community children without problems and b) children with behavior problems x children without behavior problems. The results showed satisfactory values of internal consistency and validity; besides, the factorial analysis pointed a unifactorial structure called positive parent-child interaction
Resumo:
The Cone Loading Test (CLT) consists of the execution of a load test on the piezocone probe in conjunction with the CPT test. The CLT yields the modulus ECLT, a parameter that can be used in the estimative of foundation settlement. It is also presented here the interpretation and the process to determine ECLT values from the stress-displacement curves obtained from cone loading tests. Several CLT tests were conducted at the experimental research site of São Paulo State University, Bauru-SP-Brazil. The geotechnical profile at the studied site is a brown to bright red slightly clayey fine sand, a tropical soil common to this region which is lateritic, unsaturated and collapsible. The results of CLT tests satisfactorily represent the behavior of the investigated soil. The penetrometric modulus ECLT for each depth was calculated considering the elastic behavior in the initial linear segment of the soil stress-strain curve. The ECLT moduli obtained for the various tests were compared to moduli obtained from PMT and DMT test results performed at same studied site. The shear modulus degradation curves obtained from the CLT tests are also presented. The comparison to PMT and DMT results indicates the CLT test is a viable complementary test to the CPT in the quest for better understanding stress-strain behavior of soils. Further, the CLT test provides a graphic visualization of the degradation of the shear modulus with increasing levels of strain. As a hybrid geotechnical test, CPT+CLT can be valuable in the investigation of non-conventional collapsible soils, whose literature lack reference parameters for the prediction of settlement in the design of foundations.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)