255 resultados para electrical pitting
Resumo:
The main aim of this study was to develop dense and conducting SnO 2 ceramics without precipitated phases on the grain boundaries, which was verified using field emission scanning microscopy (FE-SEM) coupled with an energy-dispersive X-ray spectroscopy (FE-SEM/EDS). Two sample groups were investigated, where the first sample group was doped with zinc while the second one was doped with cobalt. The ceramics were prepared using the oxides mixture method and the sintering was carried out in a conventional muffle oven as well as in microwave oven. The results obtained were found to be similar regarding the relative density for the two sintering methods while time and temperature gains were observed for the microwave sintering method. The relative densities obtained were nearly 95%, for the two sintering methods. Concerning the electrical characterization measurements-electric field x current density as well as the environment temperature, the ceramics obtained through the conventional sintering method presented non-ohmic behavior. For the microwave sintered ceramics, we observed an ohmic behavior with electrical resistivity of 1.3 Ωcm for the samples doped with ZnO/Nb 2O 5 and 2.5 Ωcm for that of the samples doped with CoO/Nb 2O 5. The FE-SEM/EDS results for the microwave sintered ceramics indicated a structure with a reduced number of pores and other phases segregated at the grain boundaries, which leads to a better conductive ceramic than the conventional oven sintered samples. The dilatometry analysis determined the muffle sintering temperature and the difference between the densification of cobalt and zinc oxides. The addition of niobium oxide resulted in the decrease in resistivity, which thus led us to conclude that it is possible to obtain dense ceramics with low electrical resistivity based on SnO 2 using commercial oxides by the oxides mixture technique and the microwave oven sintering method. Copyright © 2011 American Scientific Publishers All rights reserved.
Resumo:
Euphorbia tirucalli Lineu (Aveloz) belongs to the family Euphorbiaceae and is used in the treatment of cancer and warts. Some studies have reported that phorbol esters are the active principles responsible for the antitumor activity of Aveloz. The production of these molecules occurs in greater quantity in May, during the morning. This study aimed to evaluate whether the physico-chemical parameters of Aveloz homeopathic aqueous solutions such as pH, electrical conductivity and refractive index change due to storage time. Such parameters were measured regularly for 180 days. All solutions were prepared according to the method of grinding with lactose and subsequent dissolution in aqueous medium, as described in the Brazilian Homeopathic Pharmacopoeia, using as starting point the Aveloz latex collected in May. Homeopathic aqueous solutions containing only lactose were also prepared and evaluated as a control group. The potencies that were analyzed for electrical conductivity, pH and refractive index were: 4cH, 7cH, 9cH, 12cH, 14cH, 15cH, 29cH, 30cH. As a result, we found out that there was only statistical difference (p=0.035) in electrical conductivity between the homeopathic solutions containing Aveloz and the homeopathic solutions without Aveloz, when 15cH potency was compared. We also observed that the electrical conductivity increased with the aging of the solutions but is not directly related to the pH or the refractive index of the solutions, indicating that the aging process may alter the electrical conductivity of the homeopathic medicines. The presence of gas inside the glass that stores these solutions may affect the electrical conductivity measurements. Finally, no statistically significant difference was observed (p> 0.05) in the pH and refractive index.
Resumo:
In this paper, the calculation of the steady-state operation of a radial/meshed electrical distribution system (EDS) through solving a system of linear equations (non-iterative load flow) is presented. The constant power type demand of the EDS is modeled through linear approximations in terms of real and imaginary parts of the voltage taking into account the typical operating conditions of the EDS's. To illustrate the use of the proposed set of linear equations, a linear model for the optimal power flow with distributed generator is presented. Results using some test and real systems show the excellent performance of the proposed methodology when is compared with conventional methods. © 2011 IEEE.
Resumo:
Non-technical losses identification has been paramount in the last decade. Since we have datasets with hundreds of legal and illegal profiles, one may have a method to group data into subprofiles in order to minimize the search for consumers that cause great frauds. In this context, a electric power company may be interested in to go deeper a specific profile of illegal consumer. In this paper, we introduce the Optimum-Path Forest (OPF) clustering technique to this task, and we evaluate the behavior of a dataset provided by a brazilian electric power company with different values of an OPF parameter. © 2011 IEEE.
Resumo:
This paper presents a historical perspective of the Power Electronics education that has lead to the present situation in which such technology is indispensable for the exploitation of almost all type of clean energy primary sources. Some academic initiatives in Brazil are here discussed focusing the institutions grouped in a CAPES-Pró-Engenharia program. The curricula aspects and innovations are presented, emphasizing the multidisciplinary character of this field of Power Electronics application. © 2011 IEEE.
Alterations in levels of NPK, electrical conductivity and pH of substrate, in cultivation of peppers
Resumo:
The objective of this work was to evaluate the chemical alterations of the substrate in the cultivation of pepper in coconut husk fiber, in a protected environment. Initially, 160 pepper plants ('Eppo') were divided into four blocks, where two pots per block were analyzed every 21 days after transplanting. The cultivation of pepper was carried out in plastic pots of 13 L, containing coconut husk fiber, and placed in double rows with a spacing of 0.5×0.8 m between single rows and 1.10 m between double rows. After removal of the plants from the pots, individual samples of substrate (approximately 1 L) were collected from each pot and dried at ambient temperature. Electrical conductivity (EC), pH, and levels of NH4 +-N, NO3 -, P and K were determined for all periods of the cultivation. These analyses were performed using the method of extraction 1:1.5 v/v. For the conditions which the experiment was conducted, there was an increase in substrate EC, as well as in the levels of nitrogen, phosphorus and potassium.
Resumo:
This paper presents a distribution feeder simulation using VHDL-AMS, considering the standard IEEE 13 node test feeder admitted as an example. In an electronic spreadsheet all calculations are performed in order to develop the modeling in VHDL-AMS. The simulation results are compared in relation to the results from the well knowing MatLab/Simulink environment, in order to verify the feasibility of the VHDL-AMS modeling for a standard electrical distribution feeder, using the software SystemVision™. This paper aims to present the first major developments for a future Real-Time Digital Simulator applied to Electrical Power Distribution Systems. © 2012 IEEE.
Resumo:
BaCe 0.9-xNb xY 0.1O 3-δ (where x=0, 0.01, 0.03 and 0.05) powders were synthesized by solid-state reaction to investigate the influence of Nb concentration on chemical stability and electrical properties of the sintered samples. The dense electrolyte pellets were formed from the powders after being uniaxially pressed and sintered at 1550 °C. The electrical conductivities determined by impedance measurements in temperature range of 550-750 °C in different atmospheres (dry argon and wet hydrogen) showed a decreasing trend with an increase of Nb content. For all samples higher conductivities were observed in the wet hydrogen than in dry argon atmosphere. The chemical stability was enhanced with increasing of Nb concentration. It was found that BaCe 0.87Nb 0.03Y 0.1O 3-δ is the optimal composition that satisfies the opposite demands for electrical conductivity and chemical stability, reaching 0.8×10 -2 S cm -1 in wet hydrogen at 650 °C compared to 1.01×10 -2 S cm -1 for undoped electrolyte. © 2012 Elsevier Ltd and Techna Group S.r.l.
Resumo:
We present a metaheuristic approach which combines constructive heuristics and local searches based on sampling with path relinking. Its effectiveness is demonstrated by an application to the problem of allocating switches in electrical distribution networks to improve their reliability. Our approach also treats the service restoration problem, which has to be solved as a subproblem, to evaluate the reliability benefit of a given switch allocation proposal. Comparisons with other metaheuristics and with a branch-and-bound procedure evaluate its performance. © 2012 Published by Elsevier Ltd.
Resumo:
The growing demand for electrical power and the limited capital invested to provide this power is forcing countries like Brazil to search for new alternatives for electrical power generation. The purpose of this paper is to present a technical and economic study on a 15 kW solar plant installed in an isolated community, highlighting the importance of the need for financial subsidy from the government. It evaluates the importance of parameters such as the annual interest rate, specific investment, the marginal cost of expanding the electrical power supply and the government subsidy on amortization time of capital invested. © 2012 Elsevier Ltd All rights reserved.
Resumo:
Tramadol combines an μ opiate and nonopiate analgesic mechanism and might be a useful opioid in horses. This study evaluated the effect of IV tramadol on spontaneous locomotor activity (SLA), head height, and hoof withdrawal reflex (HWR) after thermal or electrical nociceptive stimuli in horses. Doses of 2 and 3 mg/kg tramadol did not affect HWR after electrical and thermal nociception, respectively. Head height and SLA were not modified by 2, 3, or 5 mg/kg tramadol. All horses treated with 5 mg/kg tramadol developed trembling in pectoral triceps, and gluteal muscles and adopted a base-wide stance. In conclusion, 2 and 3 mg/kg tramadol IV neither induced sedation nor prolonged HWR after thermal or electrical stimuli in conscious horses. The dose of 5 mg/kg tramadol IV produced excitement, and it is apparently unsuitable for clinical use. © 2013 Elsevier Inc. All rights reserved.
Resumo:
It is shown that highly conducting films of polyaniline protonated with di-esters of sulfosuccinic and sulfophthalic acids which contain alkyl- or alkoxy-type substituents exhibit highly anisotropic structural, electrical and magnetic properties. The layered-like structure of these films can be described as consisting of polyaniline chains which are mainly oriented parallel to the plane of the film and form regular out-of-plane stacks. These stacks are separated by bilayers of the dopant anions. Accordingly, the main anisotropy observed for solution cast films implies in-plane and out-of-plane measurements. An electrical anisotropy of about 80 is found for the in-plane and out-of-plane electronic conductivities at 5 K. The temperature dependences of the in-plane and out-of-plane conductivities are qualitatively similar and have been fitted as a series combination of variable-range-hopping-type and power law contributions. A maximum is observed in the temperature dependence of the electrical anisotropy at low temperature. The films also show a clear anisotropy of magnetization whose temperature and field characteristics depend on the chemical structure of the dopant anion. © 2013 Elsevier B.V.
Resumo:
Thin films of the semiconductor NiO are deposited using a straightforward combination of simple and versatile techniques: the co-precipitation in aqueous media along with the dip- coating process. The obtained material is characterized by gravimetric/differential thermal analysis (TG-DTA) and X-ray diffraction technique. TG curve shows 30 % of total mass loss, whereas DTA indicates the formation of the NiO phase about 578 K (305 C). X-ray diffraction (XRD) data confirms the FCC crystalline phase of NiO, whose crystallinity increases with thermal annealing temperature. UV-Vis optical absorption measurements are carried out for films deposited on quartz substrate in order to avoid the masking of bandgap evaluation by substrate spectra overlapping. The evaluated bandgap is about 3.0 eV. Current-voltage (I-V) curves measured for different temperatures as well as the temperature-dependent resistivity data show typical semiconductor behavior with the resistivity increasing with the decreasing of temperature. The Arrhenius plot reveals a level 233 meV above the conduction band top, which was attributed to Ni2+ vacancy level, responsible for the p-type electrical nature of NiO, even in undoped samples. Light irradiation on the films leads to a remarkable behavior, because above bandgap light induced a resistivity increase, despite the electron-hole generation. This performance was associated with excitation of the Ni 2+ vacancy level, due to the proximity between energy levels. © 2012 Springer Science+Business Media New York.
Resumo:
Industries need to adopt the environmental management concepts in the traditional supply chain management. The green supply chain management (GSCM) is an established concept to ensure environment-friendly activities in industry. This paper identifies the relationship of driving and dependence that exists between GSCM practices with regard to their adoption within Brazilian electrical/electronic industry with the help of interpretive structural modelling (ISM). From the results, we infer that cooperation with customers for eco-design practice is driving other practices, and this practice acts as a vital role among other practices. Commitment to GSCM from senior managers and cooperation with customers for cleaner production occupy the highest level. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
Optimization of the major properties of anodes based on proton conductors, such as microstructure, conductivity and chemical stability, is yet to be achieved. In this study we investigated the influence of indium on the chemical stability, microstructural and electrical characteristics of proton conducting NiO-BaCe0.9-xInxY0.1O 3-δ (NiO-BCIYx) anodes. Four compositions of cermet anode substrates NiO-BCIYx were prepared using the method of evaporation and decomposition of solutions and suspensions (EDSS). Sintered anode substrates were reduced and their microstructural and electrical properties were examined before and after reduction as a function of the amount of indium. Anode substrates tested on chemical stability in the CO2 atmosphere showed high stability compared to anode substrates based on commonly used doped barium cerates. Microstructural properties of the anode pellets before and after testing in CO2 were investigated using X-ray diffraction analysis. Impedance spectroscopy measurements were used for evaluation of electrical properties of the anode pellets and the conductivity values of reduced anodes of more than 14 S cm-1 at 600 °C confirmed percolations through Ni particles. Under fuel cell operating conditions, the cell with a Ni-BCIY20 anode achieved the highest performance, demonstrating a peak power density 223 mW/cm2 at 700 °C confirming the functionality of Ni-BCIY anodes.© 2013 Elsevier B.V. All rights reserved.