371 resultados para dentin bonding
Resumo:
Objective. The purpose of this study was to evaluate the effects of endodontic irrigants on the microhardness of root canal dentin.Study design. Thirty extracted single-rooted human teeth were used. The crowns were sectioned at the cementoenamel junction. Each root was transversely sectioned into cervical, middle, and apical segments, resulting in 90 specimens. The 3 sections of each root were separately mounted in an individual silicon device with acrylic resin. The specimens were randomly divided into the following 3 groups (n = 30), according to the irrigant solution used: (1) group 1, control (saline solution); (2) group 2, 2% chlorhexidine gluconate solution; and (3) group 3, 1% sodium hypochlorite (NaOCl). After 15 minutes of irrigation, dentin microhardness was measured on each section at 500 mu m and 1000 mu m from the pulp-dentin interface with a Vickers diamond microhardness tester in Vickers hardness number (VHN).Results. Data obtained were analyzed using analysis of variance and the Tukey test (5%). Specimens irrigated with 2% chlorhexidine (group 2) or 1% NaOCl (group 3) presented lower values of dentin microhardness, with significant difference in relation to the control group (P < .05).Conclusion. It could be concluded that chlorhexidine and NaOCl solutions significantly reduced the microhardness of root canal dentin at 500 mu m and 1000 mu m from the pulp-dentin interface.
Resumo:
Quando qualquer instrumento abrasiona ou corta a dentina, produz na superfície uma camada de lama dentinária ou smear layer. Dependendo do agente de união indicado em Odontologia adesiva, há a necessidade ou não da remoção da camada de lama da superfície dentinária. Com a finalidade de verificar a ação de diferentes substâncias para a limpeza dentinária, utilizamos 20 dentes pré-molares superiores íntegros, mantidos em soro fisiológico, nos quais as coroas foram seccionadas ao meio no sentido mésio-distal. Com instrumento diamantado, removeu-se o esmalte da porção vestibular e da porção lingual da coroa e, com uma broca carbide cilíndrica lisa nº 56, cortou-se aproximadamente 1 mm de dentina com alta rotação sob abundante refrigeração ar/água, para produzir a camada de lama dentinária. em seguida, essa superfície foi tratada com diferentes substâncias e lavada por 30 segundos com spray ar/água. No controle, foi simplesmente utilizado o spray ar/água. Os espécimes foram montados em suportes metálicos, preparados e visualizados no MEV-DSM 950 da Zeiss, em aumentos que variaram de 100 a 5.000 vezes. Os materiais que mais removeram a camada de lama foram, em ordem crescente: 1. spray ar/água; 2. fluoreto de sódio 2%; 3. associação alternada de Dakin/Tergensol; 4. água oxigenada 3%; 5. jateamento com óxido de alumínio 50 mm; 6. flúor acidulado 1,27%; 7. ácido poliacrílico 25%; 8. ácido fosfórico 10%.
Resumo:
Purpose: To evaluate the effects of the elapsed time (ET) after nonvital bleaching (NVB) and sodium ascorbate application (10%) (SAA) on the shear bond strength of dentin to ceramic.Materials and Methods: Bovine incisors were selected, internally bleached (35% carbamide peroxide) for 9 days and submitted to the following treatments (n = 10): G1, G2, G3-luting after 1, 7, and 14 days; G4, G5, and G6-luting after SAA, 1, 7, and 14 days, respectively. G7 and G8 were not bleached: G7-luting 24 hours after access cavity sealing; G8-luting 24 hours after access cavity sealing after SAA. After NVB, the vestibular dentin was exposed and flattened. The SAA was applied to the dentin (G4, G5, G6, G8) for 10 minutes, and it was then washed and dried. The dentin was etched (37% phosphoric acid), and an adhesive system (Single Bond 2) was applied. Feldspathic ceramic discs (VM7; 4-mm diameter, 3-mm thick) were luted with a dual-resin agent (RelyX ARC, 3M ESPE Dental Products, St. Paul, MN). After 24 hours, specimens were submitted to shear test on a universal testing machine. The data (MPa) were submitted to ANOVA and Dunnet's test (5%).Results: The means (+/- SD) obtained were (MPa): G1 (14 +/- 4.5), G2 (14.6 +/- 3.1), G3 (14 +/- 3.7), G4 (15.5 +/- 4.6), G5 (19.87 +/- 4.5), G6 (16.5 +/- 3.7), G7 (22.8 +/- 6.2), and G8 (18.9 +/- 5.4). SAA had a significant effect on bond strength (p = 0.0054). The effect of ET was not significant (p = 0.1519). G5 and G6 presented higher values than the other bleached groups (p < 0.05) and similar to G7 and G8 (p > 0.05).Conclusions: After NVB, adhesive luting to dentin is recommended after 7 days if sodium ascorbate has been applied prior to dentin hybridization.
Resumo:
Purpose: This study evaluated the efficacy of the union between two new self-etching self-adhesive resin cements and enamel using the microtensile bond strength test.Materials and Methods: Buccal enamel of 80 bovine teeth was submitted to finishing and polishing with metallographic paper to a refinement of #600, in order to obtain a 5-mm(2) flat area. Blocks (2 x 4 x 4 mm) of laboratory composite resin were cemented to enamel according to different protocols: (1) untreated enamel + RelyX Unicem cement (RX group); (2) untreated enamel + Bifix SE cement (BF group); (3) enamel acid etching and application of resin adhesive Single Bond + RelyX Unicem (RXA group); (4) enamel acid etching and application of resin adhesive Solobond M + Bifix SE (BFA group). After 7 days of storage in distillated water at 37 degrees C, the blocks were sectioned for obtaining microbar specimens with an adhesive area of 1 mm(2) (n = 120). Specimens were submitted to the microtensile bond strength test at a crosshead speed of 0.5 mm/min. The results (in MPa) were analyzed statistically by ANOVA and Tu key's test.Results: Enamel pre-treatment with phosphoric acid and resin adhesive (27.9 and 30.3 for RXA and BFA groups) significantly improved (p <= 0.05) the adhesion of both cements to enamel compared to the union achieved with as-polished enamel (9.9 and 6.0 for RX and BF).Conclusion: Enamel pre-treatment with acid etching and the application of resin adhesive significantly improved the bond efficacy of both luting agents compared to the union achieved with as-polished enamel.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose: To evaluate the effect of cement shade, light-curing unit, and water storage on tensile bond strength (a) of a feldspathic ceramic resin bonded to dentin.Materials and Methods: The dentin surface of 40 molars was exposed and etched with 37% phosphoric acid, then an adhesive system was applied. Forty blocks of feldspathic ceramic (Vita VM7) were produced. The ceramic surface was etched with 10% hydrofluoric acid for 60 s, followed by the application of a silane agent and a dual-curing resin cement (Variolink II). Ceramic blocks were cemented to the treated dentin using either A3 or transparent (Tr) shade cement that was activated using either halogen or LED light for 40 s. All blocks were stored in 37 degrees C distilled water for 24 h before cutting to obtain non-trimmed bar-shaped specimens (adhesive area = 1 mm(2) +/- 0.1) for the microtensile bond strength test. The specimens were randomly grouped according to the storage time: no storage or stored for 150 days in 37 degrees C distilled water. Eight experimental groups were obtained (n = 30). The specimens were submitted to the tensile bond strength test using a universal testing machine at a crosshead speed of 1 mm/min. The data were statistically analyzed using ANOVA and Tukey's post-hoc tests (alpha = 0.05).Results: The mean bond strength values were significantly lower for the corresponding water stored groups, except for the specimens using A3 resin cement activated by halogen light. There was no significance difference in mean bond strength values among all groups after water storage.Conclusion: Water storage had a detrimental effect under most experimental conditions. For both cement shades investigated (Tr and A3) under the same storage condition, the light-curing units (QTH and LED) did not affect the mean microtensile bond strengths of resin-cemented ceramic to dentin.
Resumo:
This study evaluated the effect of different thickness of disk-shaped specimens on the push-out bond strength test. Eighteen lower bovine teeth were sectioned (20mm) and prepared (15mm) with the same post system drill (Light Post (R) #1, Schaumburg, IL, Bisco, USA). The apical third of each specimen was embedded in a plastic matrix filled with an acrylic resin (Dencrilay (TM), Dencril, São Paulo, Brazil). The posts were cleaned with alcohol, silanated (ProSil (R), FGM, Joenville, SC, Brazil) and cemented with the RelyX (TM) U100 (3M ESPE, St. Paul, MN, USA). Each specimen was sectioned into three pieces of differing thicknesses (1, 2, and 4 mm). These disk-samples were allocated into 3 groups (n=18) and subjected to push-out testing. One-way ANOVA showed no influence of the specimen thickness on the results (p=0.842). No correlation was observed between thickness and push-out bond strength (Pearson Correlation, r(2)=0.0688; P=0.6209). The push-out bond strength test was not affected by the thickness of the disk-specimens.
Resumo:
The effect of application methods and dentin hydration on the bond strength of three self-etching adhesives (SEA) were evaluated; 195 extracted bovine incisors were used. The buccal surface was ground in order to expose the dentin, which remained 2-mm minimum thickness, measured by a thickness meter through an opening on the lingual surface. Adper Single Bond 2 (TM) was used for the control group. The SEA were applied following two modes of application: passive or active and two hydration states of the dentin surface-dry and wet. After light-curing, composite buildups were made using Grandio (TM) composite. The specimens were sectioned and tested with a microtensile bond strength test. The application method and the hydration state resulted in statistical differences (p = 0.000) making the values of active application for mu TBS to dentin higher than passive application. The wet surfaces showed higher mu TBS to dentin ratios than dry surfaces. There were no statistical differences in mu TBS among the SEA tested but there were differences regarding to control group.
Resumo:
Purpose: To evaluate the bond strength of indirect restorations to dentin using self-adhesive cements with and without the application of adhesive systems.Material and Methods: Seventy-two bovine incisors were used, in which the buccal surfaces were ground down to expose an area of dentin measuring a minimum of 4 x 4 mm. The indirect resin composite Resilab was used to make 72 blocks, which were cemented onto the dentin surface of the teeth and divided into 4 groups (n = 18): group 1: self-adhesive resin cement BiFix SE, applied according to manufacturer's recommendations; group 2: self-adhesive resin cement RelyX Unicem, used according to manufacturer's recommendations; group 3: etch-and-rinse Solobond M adhesive system + BiFix SE; group 4: etch-and-rinse Single Bond 2 adhesive system + RelyX Unicem. The specimens were sectioned into sticks and subjected to microtensile testing in a universal testing machine (EMIC DL-200MF). Data were subjected to one-way ANOVA and Tukey's test (alpha = 5%).Results: The mean values (+/- standard deviation) obtained for the groups were: group 1: 15.28 (+/- 8.17)(a), group 2: 14.60 (+/- 5.21)(a), group 3: 39.20 (+/- 9.98)(c), group 4: 27.59 (+/- 6.57)(b). Different letters indicate significant differences (ANOVA; p = 0.0000).Conclusion: The application of adhesive systems before self-adhesive cements significantly increased the bond strength to dentin. In group 2, RelyX Unicem associated with the adhesive system Single Bond 2 showed significantly lower mean tensile bond strengths than group 3 (BiFix SE associated with the etch-and-rinse Solobond M adhesive system).
Resumo:
Background and Objectives. The adhesion of dental materials is important for the success of treatment. The aim of this study is to evaluate the bond strength of a composite resin applied with a self-etching adhesive system in different dentins after irradiation with Er:YAG and Nd:YAG lasers, observing their morphologic pattern using Scanning Electronic Microscopy (SEM). Materials and Methods. The buccal surface of 72 bovine incisors was worn until exposure of medium depth dentin. The specimens were divided into three groups; GI: normal, GII: demineralized and GIII: hypermineralized dentin. These were also divided into two subgroups; A-irradiated for 30 s with Er:YAG laser in noncontact mode at 40 mJ and 6 Hz and B- irradiated for 30 s with Nd:YAG laser in contact mode at 60 mJ and 10 Hz. The adhesive system Clearfil SE. Bond (Kuraray) and composite resin Tetric Ceram (Vivadent) were applied on the irradiated area by the incremental technique. After storage for 24 h in distilled water at 37 degrees C, the specimens were submitted to the shear strength test in a universal testing machine (EMIC) at a crosshead speed of 1.0 mm/min. Other specimens were made to be analyzed by SEM. Results. The results were statistically analyzed by Analysis of Variance and the Tukey test. Regardless of the type of dentin, the bond strength of specimens irradiated with the Nd:YAG laser (8,94 +/- 2,07) was higher compared to specimens irradiated with the Er:YAG laser (7,03 +/- 2,47); the highest bond strength was obtained for the group of hypermineralized dentin irradiated with the Nd:YAG laser. The SEM analysis showed that the Er:YAG laser caused opening of tubules and the Nd:YAG laser produced areas of fusion as well as regions of opening of dentinal tubules. Conclusions. The dentin showed different morphological patterns and the laser promote alterations on their surfaces, influencing the bond strength of the composite resin. (C) 2010 Laser Institute of America.
Resumo:
Objectives: The lack of durability in resin-dentine bonds led to the use of chlorhexidine as MMP-inhibitor to prevent the degradation of hybrid layers. Biomimetic remineralisation is a concept-proven approach in preventing the degradation of resin-dentine bonds. The purpose of this study is to examine the integrity of aged resin-dentine interfaces created with a nanofiller-containing etch-and-rinse adhesive after the application of these two approaches.Methods: The more established MMP-inhibition approach was examined using a parallel in vivo and in vitro ageing design to facilitate comparison with the biomimetic remineralisation approach using an in vitro ageing design. Specimens bonded without chlorhexidine exhibited extensive degradation of the hybrid layer after 12 months of in vivo ageing.Results: Dissolution of nanofillers could be seen within a water-rich zone within the adhesive layer. Although specimens bonded with chlorhexidine exhibited intact hybrid layers, water-rich regions remained in those hybrid layers and degradation of nanofillers occurred within the adhesive layer. Specimens subjected to in vitro biomimetic remineralisation followed by in vitro ageing demonstrated intrafibrillar collagen remineralisation within hybrid layers and deposition of mineral nanocrystals in nanovoids within the adhesive.Conclusions: The impact was realized by understanding the lack of an inherent mechanism to remove water from resin-dentine interfaces as the critical barrier to progress in bonding with the etch-and-rinse technique. The experimental biomimetic remineralisation strategy offers a creative solution for incorporating a progressive hydration mechanism to achieve this goal, which warrants its translation into a clinically applicable technique. (C) 2011 Elsevier Ltd. All rights reserved.