203 resultados para bioassays


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fish bioassays are valuable tools that can be used to elucidate the toxicological potential of numerous substances that are present in the aquatic environment. In this study, we assessed the antagonistic action of selenium (Se) against the toxicity of mercury (Hg) in fish (Oreochromis niloticus). Six experimental groups with six fish each were defined as follows: (1) control, (2) mercury (HgCl2), (3) sodium selenite (Na2Se4O3), (4) sodium selenate (Na2Se6O4), (5) mercury + sodium selenite (HgCl2 + Na2Se4O3), and (6) mercury + sodium selenate (HgCl2 + Na2Se6O4). Hematological parameters [red blood cells (RBC), white blood cells (WBC), and erythroblasts (ERB)] in combination with cytogenotoxicity biomarkers [nuclear abnormalities (NAs) and micronuclei (MN)] were examined after three, seven, ten, and fourteen days. After 7 days of exposure, cytogenotoxic effects and increased erythroblasts caused by mercury, leukocytosis triggered by mercury + sodium selenite, leukopenia associated with sodium selenate, and anemia triggered by mercury + sodium selenate were observed. Positive correlations that were independent of time were observed between WBC and RBC, ERB and MN, and NA and MN. The results suggest that short-term exposure to chemical contaminants elicited changes in blood parameters and produced cytogenotoxic effects. Moreover, NAs are the primary manifestations of MN formation and should be included in a class characterized as NA only. Lastly, the staining techniques used can be applied to both hematological characterization and the measurement of cytogenotoxicity biomarkers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to experimentally evaluate infection in Gallus gallus domesticus with Neospora caninum tachyzoites of the NC-1 strain. Experimental infection was conducted in 90-day-old chickens, embryonated eggs and bioassays in dogs. In the first experiment, poults were randomly divided into four groups. Groups I and II were provided feed with coccidiostat, whereas groups III and IV received feed without coccidiostat. When the poults from groups I and III reached 90 days of age, they received a subcutaneous inoculation of N. caninum. Once the hens entered their egg-laying period, during the following 30 days, the eggs were collected, identified, weighed and placed in an incubator. On the 70th day after inoculation, all animals, including the chicks, were euthanized. Tissue samples from the adult poultry and chicks were collected for histopathology, immunohistochemistry (IHC) and PCR. Brain tissue and pectoral muscle samples from infected birds were fed to two dogs. Notably, the average weight of the group III eggs was lower than that of the group IV eggs (p <0.05). No changes consistent with infection in adult poultry or chicks were detected by histopathology or IHC; moreover, no amplified parasite DNA was detected in the birds'tissues or dogs'feces. No dog eliminated oocysts. In the second experiment, the embryonated chicken eggs were inoculated with 1 x 10(2) N. caninum tachyzoites, on the 10th day of incubation, and chicks born from these eggs were housed in boxes suitable for the species and received commercial feed and distilled water ad libitum. On the 30th day after infection (DAI), the poultry were euthanized, and their organs were processed as described in experiment I. The amplification of parasite DNA was observed in the spleen and pectoral muscles of one of the birds. The ingestion of bird tissues by dogs did not result in oocyst elimination. These results indicate that the parasite may have been eliminated by the host and that the use of tachyzoites to induce chronic disease might be a poor source for hens. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oil refinery effluents contain many chemicals at variable concentrations. Therefore, it is difficult to predict potential effects on the environment. The Atibaia River (SP, Brazil), which serves as a source of water supply for many municipalities, receives the effluents of one of the biggest oil refinery of this country. The aim of this study was to identify the (eco)toxicity of fresh water sediments under the influence of this oil refinery through neutral red (cytotoxicity) and ethoxyresorufin-O-deethylase (EROD) assays (AhR-mediated toxicity) in RTL-W1 cells (derived from fish liver). Once the refinery captures the waters of Jaguarí River for the development of its activities and discharges its effluents after treatment into the Atibaia River, which then flows into Piracicaba River, sediments from both river systems were also investigated. The samples showed a high cytotoxic potential, even when compared to well-known pollution sites. However, the cytotoxicity of samples collected downstream the effluent was not higher than that of sediments collected upstream, which suggested that the refinery discharges are not the main source of pollution in those areas. No EROD activity could be recorded, which could be confirmed by chemical analyses of polycyclic aromatic hydrocarbons (PAHs) that revealed a high concentration of phenanthrene, anthracene, fluoranthene, and pyrene, which are not EROD inducers in RTL-W1 cells. In contrast, high concentrations of PAHs were found upstream the refinery effluent, corroborating cytotoxicity results from the neutral red assay. A decrease of PAHs was recorded from upstream to downstream the refinery effluent, probably due to dilution of compounds following water discharges. On the other hand, these discharges apparently contribute specifically to the amount of anthracene in the river, since an increase of anthracene concentrations could be recorded downstream the effluent. Since the extrapolation of results from acute toxicity to specific toxic effects with different modes of action is a complex task, complementary bioassays covering additional specific effects should be applied in future studies for better understanding of the overall ecotoxicity of those environments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies of morphological and ultrastructural alterations in target organs have been useful for evaluating the sublethal effects of biopesticides regarded as safe for non-target organisms in ecotoxicological analyses. One of the most widely used biopesticides is neem oil, and its safety and compatibility with natural enemies have been further clarified through bioassays performed to analyze the effects of indirect exposure by the intake of poisoned prey. Thus, this study examined the cellular response of midgut epithelial cells of the adult lacewing, Ceraeochrysa claveri, to neem oil exposure via intake of neem oil-contaminated prey during the larval stage. C. claveri larvae were fed Diatraea saccharalis eggs treated with neem oil at concentrations of 0.5%, 1% and 2% throughout the larval stage. The adult females obtained from these treatments were used at two ages (newly emerged and at the start of oviposition) in morphological and ultrastructural analyses. Neem oil was found to cause pronounced cytotoxic effects in the adult midgut, such as cell dilation, emission of cytoplasmic protrusions, cell lysis, loss of integrity of the cell cortex, dilation of cisternae of the rough endoplasmic reticulum, swollen mitochondria, vesiculated appearance of the Golgi complex and dilated invaginations of the basal labyrinth. Epithelial cells responded to those injuries with various cytoprotective and detoxification mechanisms, including increases in cell proliferation, the number of calcium-containing cytoplasmic granules, and HSP 70 expression, autophagic processes and the development of smooth endoplasmic reticulum, but these mechanisms were insufficient for recovery from all of the cellular damage to the midgut. This study demonstrates that neem oil exposure impairs the midgut by causing sublethal effects that may affect the physiological functions of this organ, indicating the importance of studies of different life stages of this species and similar species to evaluate the safe and compatible integrated use of biopesticides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Biotecnologia - IQ