255 resultados para adrenergic receptors
Resumo:
Aim: In the present study, we assessed the role of 5-hydroxytryptamine (5-HT) receptors (5-HT1A, 5-HT2 and 5-HT7) in the nucleus raphe magnus (NRM) on the ventilatory and thermoregulatory responses to hypoxia.Methods: To this end, pulmonary ventilation (V-E) and body temperature (T-b) of male Wistar rats were measured in conscious rats, before and after a 0.1 mu L microinjection of WAY-100635 (5-HT1A receptor antagonist, 3 mu g 0.1 mu L-1, 56 mM), ketanserin (5-HT2 receptor antagonist, 2 mu g 0.1 mu L-1, 36 mM) and SB269970 (5-HT7 receptor antagonist, 4 mu g 0.1 mu L-1, 103 mM) into the NRM, followed by 60 min of severe hypoxia exposure (7% O-2).Results: Intra-NMR microinjection of vehicle (control rats) or 5-HT antagonists did not affect V-E or T-b during normoxic conditions. Exposure of rats to 7% O-2 evoked a typical hypoxia-induced anapyrexia after vehicle microinjections, which was not affected by microinjection of WAY-100635, SB269970 or ketanserin. The hypoxia-induced hyperpnoea was not affected by SB269970 and ketanserin intra-NMR. However, the treatment with WAY-100635 intra-NRM attenuated the hypoxia-induced hyperpnoea.Conclusion: These data suggest that 5-HT acting on 5-HT1A receptors in the NRM increases the hypoxic ventilatory response.
Resumo:
Neural stem/progenitor cell (NSP) biology and neurogenesis in adult central nervous system (CNS) are important both towards potential future therapeutic applications for CNS repair, and for the fundamental function of the CNS. In the present study, we report the characterization of NSP population from subventricular zone (SVZ) of neonatal piglet brain using in vivo and in vitro systems. We show that the nestin and vimentin-positive neural progenitor cells are present in the SVZ of the lateral ventricles of neonatal piglet brain. In vitro, piglet NSPs proliferated as neurospheres, expressed the typical protein of neural progenitors, nestin and a range of well-established neurodevelopmental markers. Upon dissociation and subculture, piglet NSPs differentiated into neurons and glial cells. Clonal analysis demonstrates that piglet NSPs are multi-potent and retain the capacity to generate both glia and neurons. These cells expressed VEGF, VEGFR1, VEGFR2 and Neuropilin-1 and -2 mRNAs. Real time PCR revealed that SVZ NSPs from newborn piglet expressed total VEGF and all VEGF splice variants. These findings show that piglet NSPs may be helpful to more effectively design growth factor based strategies to enhance endogenous precursor cells for cell transplantation studies potentially leading to the application of this strategy in the nervous system disease and injury.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
There is evidence that fibroblast growth factors (FGFs) are involved in the regulation of growth and regression of the corpus luteum (CL). However, the expression pattern of most FGF receptors (FGFRs) during CL lifespan is still unknown. The objective of the present study was to determine the pattern of expression of 'B' and 'C' splice variants of FGFRs in the bovine CL. Bovine CL were collected from an abattoir and classed as corpora hemorrhagica (Stage I), developing (Stage II), developed (Stage III) or regressed (Stage IV) CL. Expression of FGFR mRNA was measured by semiquantitative reverse transcription-polymerase chain reaction and FGFR protein was localised by immunohistochemistry. Expression of mRNA encoding the 'B' and 'C' spliced forms of FGFR1 and FGFR2 was readily detectable in the bovine CL and was accompanied by protein localisation. FGFR1C and FGFR2C mRNA expression did not vary throughout CL lifespan, whereas FGFR1B was upregulated in the developed (Stage III) CL. FGFR3B, FGFR3C and FGFR4 expression was inconsistent in the bovine CL. The present data indicate that FGFR1 and FGFR2 splice variants are the main receptors for FGF action in the bovine CL.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Norepinephrine (NE) and clonidine produce a phasic, dose-dependent contraction of the isolated guinea-pig terminal ileum. The effect of NE was blocked by prazosin which produced a parallel rightward shift of the concentration-effect curve to NE, with a significant depression of maximum effects. Yohimbine and indomethacin noncompetitively blocked, whereas practolol potentiated, the contractile effect of NE. The contractile effect of clonidine was not antagonized by indomethacin or atropine. These results suggest that the isolated guinea-pig terminal ileum has excitatory receptors sensitive to clonidine stimulation and excitatory alpha receptors sensitive to blockade by prazosin, and that the activation of the latter may be related to the activation of endogenous prostaglandin synthesis.
Resumo:
Noradrenaline (NOR) is a neurotransmitter presenl in the central nervous system which is related to the control of ingestive behavior of food and fluids. We describe here the relationship between NOR and intake of water and NaCl solution, fluids that are essential for a normal body fluid electrolytic balance. Central NOR has an inhibitory effect on fluid intake, but it either induces or not alterations in food intake. Several ways of inducing water intake, such as water deprivation, meal-associated water intake, administration of angiotensinergic, cholinergic or beta-adrenergic agonists, or administration of hyperosmotic solutions, are inhibited by alpha-adrenergic agonists. Need-induced sodium intake by sodium-depleted animals is also inhibited by alpha-adrenergic agonists. NOR can also facilitate fluid intake. Water intake is elicited by NOR and the integrity of central noradrenergic systems is necessary for a normal expression of water or salt intake in dehydrated animals. The angiotensinergic component of either behavior apparently depends on a central noradrenergic system. NOR probably facililates fluid intake by acting on postsynaptic receptors, but we do not know how it inhibits fluid infake. The inhibitory and facilitatory effects of NOR on ingestive behavior suggest a dual role for this neurotransmitter in the control of hydromineral fluid intake.