313 resultados para THERMAL GRAVIMETRIC ANALYSIS
Resumo:
Solid-state compounds of general formula LnL(3).2H(2)O, where Ln is heavier trivalent lanthanides and yttrium, L is 4-chlorobenzylidenepyruvate have been synthetised.On heating these compounds decompose in steps. They lose the hydration water in the first step and the thermal decomposition of the anhydrous compounds occurs with the formation of oxochloride (Eu, Gd); mixture of oxide and oxochloride that decrease with increasing of atomic number of metal (Tb-Tm); or oxide (Yb, Lu, Y) as final residue, up to 900degreesC. The dehydration enthalpies found for terbium, holmium, ytterbium and yttrium compounds were: 34.93, 42.40, 57.39 and 62.24 kJ mol(-1), respectively.
Resumo:
Non-isothermal kinetic parameters regarding to the thermal decomposition of the ligninocellulosic fraction present in compost from urban solid residues (USR) obtained through stack covered (SC) with composted material, comes from the usine in composing of Araraquara city, São Paulo state, Brazil, and from stack containing academic restaurant organic solid residues (SAR). The samples were periodically revolved round 132 days of composting.Results from TG, DTG and DSC curves obtained on inert atmosphere indicated that the lignocellulosic fraction present, despite the slow degradation during the composting process, is thermally less stable than other substances originated during that process. The lignocellulosic fraction decomposition, between 200 and 400degreesC, were kinetically evaluated through non-isothermal methods of analysis.By using the Flynn-Wall and Ozawa isoconversional method, the medium activation energy, E-a, and pre-exponential factor, IgA, were 283.0+/-4.6, 257.6+/-1.3 U mol(-1) and 25.4+/-0.8, 23.2+/-0.2 min(-1),to the SC and SAR, respectively, at 95% confidence level.From E-a, and IgA values and DSC curves, Malek procedure could be applied, Suggesting that the SB (Sestik-Berggren) kinetic model is suitable for the first thermal decomposition step.
Resumo:
The preparation and thermal decomposition ammonium selenate and calcium and beryllium selenates have been reported previously. However, there are not any information in the literature concerning the thermal decomposition of double selenates of calcium, of beryllium and ammonium. Thermogravimetry (TG), Differential Thermal Analysis (DTA) were used in the studies and characterisation of these compounds.
Resumo:
Solid-state M-4-Cl-BP compounds, where M stands for bivalent Mg, Ca, Sr, Ba and 4-Cl-BP is 4-chlorobenzylidenepyruvate, have been synthesized. Simultaneous thermogravimetry-differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), infrared spectroscopy, elemental analysis and complexometry were used to characterize and to study the thermal behaviour of these compounds. The results led to informations about the composition, dehydration, thermal stability and thermal decomposition of the isolated complexes.
Resumo:
In this work it was performed energetic and exergetic analyses of three thermal plants to assessment a cogeneration system in expansion of a sugar-alcohol factory. The initial configuration considered is constituted by a low pressure steam generator, single stage steam turbines for electricity generation and crusher, shredder and mills with mechanical driving. In the intermediary configuration, the low pressure steam generator was substituted by another which generates steam at higher pressure and higher temperature, the steam turbines for electricity generation were substituted by a multiple stages extraction-condensation turbine and the other steam turbines were maintained. The final configuration consists in the substitution of these last turbines by electrical motors. Thermodynamic analyses were performed to evaluate the equipment and the overall plants efficiencies to permit a comparison among the plants. Besides of this, some important parameters of the sugar-alcohol factories were calculated.
Resumo:
A study of both zirconium and hafnium alpha-hydroxycarboxylates for analytical applications is presented, These compounds are studied by infrared spectroscopy, thermal analysis and X-ray diffractometry. dl-Mandelic, dl-p-bromomandelic and dl-2-naphthylglycolic acids are the more adequate reagents for gravimetric determinations of zirconium and hafnium, the ligands dl-2-hydroxyhexanoic and dl-2-hydroxydodecanoic acids were used for the first time and the results showed that they are also adequate reagents for the same purpose.
Resumo:
Xerogels were prepared from zirconium, barium, aluminum, lanthanum and lithium acetates, corresponding to a Li containing ZBLA composition. The study of their thermal properties (DSC, TG/DTG, FT-IR) showed that they might be used as chemically stable precursors in the preparation of fluoride glasses. Hydrofluoric acid in solution was chosen as a mild fluorinating agent. This newly proposed technique of fluorinating allowed to obtain high quality ZBLALi glass which presents the advantage of higher thermal stability and homogeneity in comparison with the glass obtained using individual commercial fluorides.
Resumo:
Solid-state compounds of general formula LnL(3)center dot nH(2)O, where Ln represents heavier lanthanides and yttrium and L is 2-chlorobenzylidenepyruvate, have been synthesized. Chemical analysis, simultaneous thermogravimetry-differential analysis (TG-DTA), differential scanning calorimetry (DSC), X-ray powder diffractometry, elemental analysis and infrared spectroscopy have been employed to characterize and to study the thermal behaviour of these compounds in dynamic air atmosphere.On heating these compounds decompose in four (Gd, Tb, Ho to Lu, Y) or five (Eu, Dy) steps. They lose the hydration water in the first step and the thermal decomposition of the anhydrous compounds up to 1200 degrees C occurs with the formation of the respective oxide, Tb4O7 and Ln(2)O(3) (Ln=Eu, Gd, Dy to Lu and Y) as final residue. The dehydration enthalpies found for these compounds (Eu, to Lu and Y) were: 65.77, 55.63, 86.89, 121.65, 99.80, 109.59, 131.02, 119.78, 205.46 and 83.11 kJ mol(-1), respectively.
Resumo:
Solid-state Ln-4-MeO-Bz compounds, where Ln stands for trivalent Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y and 4-MeO-Bz is 4-methoxybenzoate, have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), X-ray powder diffractometry, infrared spectroscopy and complexometry were used to characterize and to study the thermal behaviour of these compounds. The results led to information about the composition, dehydration, phase transition, coordination mode, structure, thermal behaviour and thermal decomposition of the isolated compounds. The phase transition observed in the some compounds has been reported for the first time. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Samples of water based commercial acrylic resin paints were spread in a film form on slides, dried at room temperature and exposed to solar radiation for up to eight months.The characterization and quantification of resins and charges in the white paint emulsion were carried out for the thermal decomposition. Besides this, X-ray diffractometry was used to identify CaCO3 as charge and TiO2 (rutile phase) as pigment.It was observed through thermal techniques similar behavior to the samples even though with varied exposure time.Kinetic studies of the samples allowed to obtain the activation energy (Ea) and Arrhenius parameters (A) to the thermal decomposition of acrylic resin to three different commercial emulsion (called P-1, P-2, P-3) through non-isothermal procedures. The values of E. varied regarding the exposition time (eight months) and solar radiation from 173 to 197 U mol(-1) (P-1 sample), from 175 to 226 W mol(-1) (P-2 sample) and 206 to 197 kJ mol(-1) (P-3 sample).Kinetic Compensation Effect (KCE) observed for samples P-2 and P-3 indicate acrylic resin s present in these may be similar in nature. This aspect could be observed by a small difference in the thermal behavior of the TG curves from P I to P-2 and P-3 sample.The simulated kinetic model to all the samples was the autocatalytic estdk Berggreen.
Resumo:
The present work investigates the influence of milling and calcination atmosphere on the thermal decomposition of SrTiO3 powder precursors. Both pure and neodymium-modified SrTiO3 samples were studied. Milling did not significantly influence numerical mass loss value, but reduced the number of decomposition steps, modifying the profiles of the TG and DTA curves. on the other hand, milling increases the amount of energy liberated by the system upon combustion of organic matter. It was also observed that the milling process, associated to the calcination in an oxygen atmosphere, considerably decreases the amount of organic matter and increases the final mass loss temperature.
Resumo:
Solid Ln-OKCO3-DMCP compounds, where Ln represents lanthanides (III) and yttrium (III) ions and DMCP is the anion 4-dimethyiaminocinnamylidenepyruvate, have been prepared. Thermogravimetry, derivative thermogravimetry (TG, DTG), differential scanning calorimetry (DSC), X-ray diffraction powder patterns and elemental analysis have been used to characterize the compounds. The thermal stability as well as the thermal decomposition of these compounds were studied using an alumina crucible in an air atmosphere.
Resumo:
The electric and dielectric properties of the grain boundary of Na0.85Li0.15NbO3 lead-free ferroelectric-semiconductor perovskite were investigated. The impedance spectroscopy was carried out as a function of a thermal cycle. The sodium lithium niobate was synthesized by a chemical route based on the evaporation method. Dense ceramic, relative density of 97%, was prepared at 1423 K for 2 h in air atmosphere. ac measurements were carried out in the frequency range of 5 Hz-13 MHz and from 673 to 1023 K. Theoretical adjust of the impedance data was performed to deriving the electric parameters of the grain boundary. The electric conductivity follows the Arrhenius law, with activation energy values equal to 1.55 and 1.54 eV for heating and cooling cycle, respectively. The nonferroelectric state of the grain boundary and its correlation with symmetry are discussed in the temperature domain. (C) 2003 American Institute of Physics.
Resumo:
Solid state M-4-Me-BP compounds, where M stands for bivalent Mn, Fe, Co, Ni, Cu, Zn, Pb and 4-Me-BP is 4-methylbenzylidenepyruvate, have been synthesized. Simultaneous thermogravimetry-differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), X-ray powder diffractometry, infrared spectroscopy, elemental analysis, and complexometry were used to characterise and to study the thermal behaviour of these compounds. The results led to information about the composition, dehydration, thermal stability and thermal decomposition of the isolated complexes. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
This work aims the evaluation of the kinetic triplets corresponding to the two successive steps of thermal decomposition of Ti(IV)-ethylenediaminetetraacetate complex. Applying the isoconversional Wall-Flynn-Ozawa method on the DSC curves, average activation energy: E=172.4 +/- 9.7 and 205.3 +/- 12.8 kJ mol(-1), and pre-exponential factor: logA = 16.38 +/- 0.84 and 18.96 +/- 1.21 min(-1) at 95% confidence interval could be obtained, regarding the partial formation of anhydride and subsequent thermal decomposition of uncoordinated carboxylate groups, respectively.From E and logA values, Dollimore and Malek methods could be applied suggesting PT (Prout-Tompkins) and R3 (contracting volume) as the kinetic model to the partial formation of anhydride and thermal decomposition of the carboxylate groups, respectively.