184 resultados para Power flow


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of the present article is to assess and compare the performance of electricity generation systems integrated with downdraft biomass gasifiers for distributed power generation. A model for estimating the electric power generation of internal combustion engines and gas turbines powered by syngas was developed. First, the model determines the syngas composition and the lower heating value; and second, these data are used to evaluate power generation in Otto, Diesel, and Brayton cycles. Four synthesis gas compositions were tested for gasification with: air; pure oxygen; 60% oxygen with 40% steam; and 60% air with 40% steam. The results show a maximum power ratio of 0.567 kWh/Nm(3) for the gas turbine system, 0.647 kWh/Nm(3) for the compression ignition engine, and 0.775 kWh/Nm(3) for the spark-ignition engine while running on synthesis gas which was produced using pure oxygen as gasification agent. When these three systems run on synthesis gas produced using atmospheric air as gasification agent, the maximum power ratios were 0.274 kWh/Nm(3) for the gas turbine system, 0.302 kWh/Nm(3) for CIE, and 0.282 kWh/Nm(3) for SIE. The relationship between power output and synthesis gas flow variations is presented as is the dependence of efficiency on compression ratios. Since the maximum attainable power ratio of CIE is higher than that of SIE for gasification with air, more research should be performed on utilization of synthesis gas in CIE. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tendinous lesions are very common in athlete horses. The process of tendon healing is slow and the quality of the new tissue is often inferior to the original, leading in many cases to recurrence of the lesion. One of the main reasons for the limited healing capacity of tendons is its poor vascularization. At present, cell therapy is used in equine practice for the treatment of several disorders including tendinitis, desmitis and joint disease. However, there is little information regarding the mechanisms of action of these cells during tissue repair. It is known that Mesenchymal Stem Cells (MSCs) release several growth factors at the site of implantation, some of which promote angiogenesis. Comparison of blood flow using power Doppler ultrasonography was performed after the induction superficial digital flexor tendon tendinitis and implantation of adipose tissue-derived MSCs in order to analyze the effect of cell therapy on tendon neovascularization. For quantification of blood vessel histopathological examinations were conducted. Increased blood flow and number of vessels was observed in treated tendons up to 30 days after cell implantation, suggesting promotion of angiogenesis by the cell therapy.