225 resultados para Microwave Sintering


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to show the microwaves action in fixation of rat fetuses, dermal and cartilaginous tissues, using histological and immunohistochemistry methods for analysis. It was possible to conclude in this study using the rat as experimental model that the two methods for antibody retrieval, presented an excellent ways for the use of Ki67 antibody in the immunohistochemical analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: This study evaluated the influence of polymerization cycle and thickness of maxillary complete denture bases on the porosity of acrylic resin. Materials and Methods: Two heat-activated denture base resins - one conventional (Clássico) and one designed for microwave polymerization (Onda-Cryl) - were used. Four groups were established, according to polymerization cycles: A (Onda-Cryl, short microwave cycle), B (Onda-Cryl, long microwave cycle), C (Onda-Cryl, manufacturing microwave cycle), and T (Clássico, water bath). Porosity was evaluated for different thicknesses (2.0, 3.5, and 5.0 mm; thicknesses I, II, and III, respectively) by measurement of the specimen volume before and after its immersion in water. The percent porosity data were submitted to Kruskal-Wallis for comparison among the groups. Results: The Kruskal-Wallis test detected that the combinations of the different cycles and thicknesses showed significant differences, and the mean ranks of percent porosity showed differences only in the thinnest (2.0 mm) microwave-polymerized specimens (A = 53.55, B = 40.80, and C = 90.70). Thickness did not affect the results for cycle T (I = 96.15, II = 70.20, and III = 82.70), because porosity values were similar in the three thicknesses. Conclusions: Microwave polymerization cycles and the specimen thickness of acrylic resin influenced porosity. Porosity differences were not observed in the polymerized resin bases in the water bath cycle for any thickness. © 2007 by The American College of Prosthodontists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: This study evaluated the effectiveness of different exposure times of microwave irradiation on the disinfection of a hard chairside reline resin. Materials and Methods: Sterile specimens were individually inoculated with one of the tested microorganisms (Pseudomonas aeruginosa, Staphylococcus aureus, Candida albicans, and Bacillus subtilis) and incubated for 24 hours at 37°C. For each microorganism, 10 specimens were not microwaved (control), and 50 specimens were microwaved. Control specimens were individually immersed in sterile saline, and replicate aliquots of serial dilutions were plated on selective media appropriate for each organism. Irradiated specimens were immersed in water and microwaved at 650 W for 1, 2, 3, 4, or 5 minutes before serial dilutions and platings. After 48 hours of incubation, colonies on plates were counted. Irradiated specimens were also incubated for 7 days. Some specimens were prepared for scanning electron microscopic (SEM) analysis. Results: Specimens irradiated for 3, 4, and 5 minutes showed sterilization. After 2 minutes of irradiation, specimens inoculated with C. albicans were sterilized, whereas those inoculated with bacteria were disinfected. One minute of irradiation resulted in growth of all microorganisms. SEM examination indicated alteration in cell morphology of sterilized specimens. The effectiveness of microwave irradiation was improved as the exposure time increased. Conclusion: This study suggests that 3 minutes of microwave irradiation can be used for acrylic resin sterilization, thus preventing cross-contamination. © 2008 by The American College of Prosthodontists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated the effect of microwave energy on the hardness, impact strength and flexural strength of the Clássico, Onda-Cryl and QC-20 acrylic resins. Aluminum die were embedded in metallic or plastic flasks with type III dental stone, in accordance with the traditional packing technique. A mixing powder/liquid ratio was used according to the manufacturer's instructions. After polymerization in water batch at 74°C for 9 h, boiling water for 20 min or microwave energy at 900 W for 10 min, the specimens were deflasked after flask cooling at room temperature, and submitted to finishing. Specimens non-disinfected and disinfected by microwave irradiation were submitted to hardness, impact and flexural strength tests. Each specimen was immersed in distilled water and disinfected in a microwave oven calibrated to 650 W for 3 min. Knoop hardness test was performed with 25 g load for 10 s, impact test was carried out using the Charpy system with 40 kpcm, and 3-point bending test with a crosshead speed of 0.5 mm/min until fracture. Data were submitted to statistical analysis by ANOVA and Tukey's test (α=0.05). Disinfection by microwave energy decreased the hardness of Clássico and Onda-Cryl acrylic resins, but no effect was observed on the impact and flexural strength of all tested resins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We review the basic hypotheses which motivate the statistical framework used to analyze the cosmic microwave background, and how that framework can be enlarged as we relax those hypotheses. In particular, we try to separate as much as possible the questions of gaussianity, homogeneity, and isotropy from each other. We focus both on isotropic estimators of nongaussianity as well as statistically anisotropic estimators of gaussianity, giving particular emphasis on their signatures and the enhanced cosmic variances that become increasingly important as our putative Universe becomes less symmetric. After reviewing the formalism behind some simple model-independent tests, we discuss how these tests can be applied to CMBdata when searching for large-scale anomalies. Copyright © 2010 L. Raul Abramo and Thiago S. Pereira.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For microwave applications, including mobile and satellite communications, ceramic resonators should have a high dielectric constant, low dielectric losses, and high frequency stability. In this sense, TiO2-ZrO 2 ceramics have been investigated as a function of sintering behavior, phase composition, and microstructure. The ceramics were densified reaching a value of about 86% of theoretical density at 1400°C sintering temperature. The ceramics are prepared by mixing raw materials with the following TiO2-ZrO2 weight % ratio: 100 to 0, 90 to 10, and 80 to 20, respectively. The measured dielectric constants are between 79 and 88 values, while the quality factor due to dielectric losses are between 2820 and 5170. These results point out the influence of Ti/Zr ratio on controlling the dielectric properties. © (2010) Trans Tech Publications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the effect of the milling time on the densification of the alumina ceramics with or without 5wt.%Y 2O 3, is evaluated, using high-energy ball milling. The milling was performed with different times of 0, 2, 5 or 10 hours. All powders, milled at different times, were characterized by X-Ray Diffraction presenting a reduction of the crystalline degree and crystallite size as function of the milling time increasing. The powders were compacted by cold uniaxial pressing and sintered at 1550°C-60min. Green density of the compacts presented an increasing as function of the milling time and sintered samples presented evolution on the densification as function of the reduction of the crystallite size of the milled powders. © (2010) Trans Tech Publications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, (Ca 1-xCu x)TiO 3 crystals with (x = 0, 0.01 and 0.02), labeled as CTO, CCTO1 and CCTO2, were synthesized by the microwave-hydrothermal method at 140°C for 32 min. XRD patterns (Fig. 1), Rietveld refinement and FT-Raman spectroscopy indicated that these crystals present orthorhombic structure Pbnm. Micro-Raman and XANES spectra suggested that the substitution of Ca by Cu in A-site promoted a displacement of the [TiO6]-[TiO6] clusters adjacent from its symmetric center, which leads distortions on the [CaO 12] clusters neighboring and consequently cause the strains into the CaTiO3 lattice. FE-SEM images showed that these crystals have an irregular shape as cube like probably indicating an Ostwald-ripening and self-assemble as dominant mechanisms to crystals growth. The powders presented an intense PL blue-emission.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work CdMoO 4 nanoparticles were obtained under hydrothermal conditions using microwave radiation (2.45 GHz) (MH) at 100°C for different times. These powders were analyzed by X-ray diffraction (XRD), Field-emisson gum scanning electron microscopy (FEG-SEM), Ultraviolet-visible (UV-vis) absorption spectroscopy and photoluminescence (PL) measurements. XRD pattern confirmed that the pure CdMoO 4 phases were obtained. FEG-SEM powders present large-scale and homogeneous particles with microspheres-like morphology. UV-vis results were employed to determine the optical band gap these materials. Also, it showed existence of photoluminescence (PL) emission in the green wavelength range of 540-546 nm. Photocatalytic activity of CdMoO 4 nanocrystals was examined by monitoring the degradation of rhodamine B dye.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, zinc oxide powders were synthesized by microwave-assisted hydrothermal method in basic medium. These powders were analyzed by X-ray diffraction (XRD), Field-emisson gum scanning electron microscopy (FEG-SEM), Ultraviolet-visible (UV-vis) absorption spectroscopy and photoluminescence (PL) measurements. XRD pattern confirmed that the pure ZnO phases were obtained after MH processing performed at 130°C/ 1h. FEG-SEM micrographs reveals that these nanostructures are made up of ZnO plates. UV-vis results were employed to determine the optical band gap these materials. Also, it showed existence of photoluminescence (PL) in the different zinc powders. An orange PL emission when excited by 350 nm wavelength at room temperature was observad in the different powders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This communication reports that FeWO 4 nanocrystals were successfully synthesized by the microwave-hydrothermal method at 443 K for 1 h. The structure and shape of these nanocrystals were characterized by X-ray diffraction, Rietveld refinement, and transmission electron microscopy. The experimental results and first principles calculations were combined to explain the electronic structure and magnetic properties. Experimental data were obtained by magnetization measurements for different applied magnetic fields. Theoretical calculations revealed that magnetic properties of FeWO 4 nanocrystals can be assigned to two magnetic orderings with parallel or antiparallel spins in adjacent chains. These factors are crucial to understanding of competition between ferro- and antiferromagnetic behavior. © 2012 Elsevier Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents the structural characterization of Ti-10Si-5B and Ti-20Si-10B (at-%) alloys produced by high-pressure assisted sintering. Sintering was performed in air at 1100 and 1200°C for 60 s using pressure levels of 5 GPa. Structural evaluation of sintered samples was conducted by means of scanning electron microscopy and energy dispersive spectrometry. Samples were successfully consolidated after sintering, which presented theoretical density values higher than 99%. The microstructures of the sintered Ti-10Si-5B and Ti-20Si-10B alloys revealed the presence of the TiSS, TiB, TiB2, Ti5Si3, Ti5Si4, TiSi, and TiSi2.phases. A small amount of Ti6Si2B was formed after high-pressure assisted sintering of the Ti-20Si-10B alloy (5GPa, 1100°C for 60 s) indicating that equilibrium structures were not achieved during short sintering times. No oxygen and carbon contamination was detected in structures of Ti-Si-B alloys after high-pressure sintering at 1100 and 1200°C without controlled atmosphere. © (2012) Trans Tech Publications, Switzerland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cystalline ceria (CeO2) nanoparticles have been synthesized by a simple and fast microwave-assisted hydrothermal (MAH) under NaOH, KOH, and NH4OH mineralizers added to a cerium ammonium nitrate aqueous solution. The products were characterized by X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transformed-IR and Raman spectroscopies. Rietveld refinement reveals a cubic structure with a space group Fm3m while infrared data showed few traces of nitrates. Field emission scanning microcopy (FEG-SEM) revealed a homogeneous size distribution of nanometric CeO2 nanoparticles. The MAH process in KOH and NaOH showed most effective to dehydrate the adsorbed water and decrease the hydrogen bonding effect leaving a weakly agglomerated powder of hydrated ceria. TEM micrographs of CeO2 synthesized under MAH conditions reveal particles well-dispersed and homogeneously distributed. The MAH enabled cerium oxide to be synthesized at 100 °C for 8 min. © 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crystalline terbium-doped indium hydroxide structures were prepared by a rapid and efficient Microwave-Assisted Hydrothermal (MAH) method. Nanostructures were obtained at a low temperature. FE-SEM images confirm that these samples are composed of 3D nanostructures. XRD, optical diffuse reflectance and photoluminescence (PL) measurements were used to characterize the products. Emission spectra of terbium-doped indium hydroxide (In(OH)3:xTb 3+) samples under excitation (350.7 nm) presented broad band emission referent to the indium hydroxide matrix and 5D4 → 7F6, 5D4 → 7F 5, 5D4 → 7F4, and 5D4 → 7F3 terbium transitions at 495, 550, 590 and 627 nm, respectively. Relative intensities of the Tb 3+ emissions increased as the concentration of this ion increased from 0, 1, 2, 4 and 8 mol%, of Tb3+, but the luminescence is drastically quenched for the In(OH)3 matrix. © 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we report the development of an efficient and rapid microwave assisted solvothermal (MAS) method to prepare wurtzite ZnS nanoparticles at 413 K using different precursors. The materials obtained were analyzed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (MET) ultraviolet-visible (UV-vis) and photoluminescence (PL) measurements. The structure, surface chemical composition and optical properties were investigated as a function of the precursor. In addition, effects as well as merits of microwave heating on the processing and characteristics of ZnS nanoparticles obtained are reported. The possible formation mechanism and optical properties of these nanoparticles were also reported. © 2012 Elsevier B.V. All rights reserved.