190 resultados para MYCOTOXIN AND TILAPIA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Aquaculture practices usually put the Nile tilapia in an artificial social environment, which males predominate due to their faster growth desirable for aquaculture purposes. Such a situation can increase male-male fighting because males are generally more aggressive than females, and also because fighting ability is similar within the same sex, leading to longer contests. As behavior has been used to infer welfare in several fish species, the aim of this study was to investigate whether sex composition affects agonistic interactions, social hierarchy and energetic demand in groups of Nile tilapia (Oreochromis niloticus; L.). Size-matched adult fish were divided in two treatments: MM = four males and MF = two males and two females (10 repetitions for each treatment). The experiment lasted for 11 days and social interactions (aggressiveness and rank order) were recorded at the 2nd, 6th and 10th days (15 min per day). Fish were food deprived and body weight loss was used to infer energetic cost. A higher frequency of lateral threat (Student’s t independent test; t = 2.55; p = 0.02) and total interactions (Student’s t independent test; t = -2.81; p = 0.01) was observed in the MF treatment. MM group showed unstable hierarchy (Binomial test, p = 0.04), which is considered a social stressor. However, mean weight loss was not affected by treatments (Student’s t independent test; t = -0.74; p = 0.47). These results support the idea that sexual composition affects aggressive interactions and destabilizes social hierarchy, but not energy cost
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The knowledge of how animals deposited chemical components as water, protein, fat and ash in the carcass is importance for the formulation of a balanced diet, allowing maximum performance with a low environmental impact. So, the study was carried out to evaluate the influence of different tilapia strains (Chitralada, Commercial, Red and Universidade Federal de Lavras [UFLA]) on the deposition of bodily chemical components in the carcass. The bodily components analyzed were water, protein, fat and ash. For the determination of the bodily chemical deposition curves by age, the exponential, Brody, logistic, Gompertz and von Bertalanffy models were adjusted. The Commercial and UFLA strains deposited water at a faster speed (P<0.05) compared with the remaining strains. As for protein, the Red strain had a lower estimated maturity weight (49.37 g), and was more precocious (202 days) with regard to maximum deposition in comparison to the other strains (Chitralada, UFLA and Commercial) in which there was an estimated maturity weight of 231.5 g and maximum depositionfor 337 days. There were no differences (P>0.05) for the logistic model parameter between Red, UFLA and Commercial strains for fat, which presented a maximum fat deposition (0.23 g) at 310 days of age. Regarding ash deposition, the Commercial strain presented a higher maximum deposition (0.10 g) at 337 days, occurring later than the other strains that presented maximum deposition (0.033g) at 254 days of age. Thus, it was concluded that the genetic strains evaluated differ in chemical deposition curves of water, protein, fat and ash.
Resumo:
In the aquatic environment, biotransformation enzymes are established biomarkers for assessing PAH exposure in fish, but little is known about the effect of 17β-estradiol (E2) on these enzymes during exposure to benzo(a)pyrene (BaP). In this study, Nile tilapia (Oreochromis niloticus) were exposed for 3, 5, and 10 days to BaP (300 μg L(-1)) and E2 (5 μg L(-1)). These substances were applied isolated or mixed. In the mixture experiment, fish were analyzed pre- and postexposure in order to better understand whether preexposure to the hormone masks the responses activated by PAH or vice versa. Phase I enzymes ethoxyresorufin-O-deethylase (EROD), pentoxyresorufin-O-depenthylase (PROD), and benzyloxyresorufin-O-debenzylase (BROD) activities as well as the phase II enzyme glutathione S-transferase (GST) were analyzed. Isolated E2 treatment decreased EROD activity after 3 days, but this enzyme activity returned to control values after 5 and 10 days of exposure. Isolated BaP treatment significantly induced EROD activity after 3 and 5 days, and the activity returned to control levels after ten exposure days. Combined treatment (E2 + Bap) significantly increased EROD activity, both in the pre- and postexposure. This increase was even higher than in the isolated BaP treatment, suggesting a synergism between these two compounds. When E2 and BaP were used singly, they did not change BROD and PROD activities. However, combined treatment (E2 + Bap) significantly increased PROD activity. Isolated BaP treatment increased GST activity after 10 days. However, this response was not observed in the mixture treatment, suggesting that E2 suppressed the GST induction modulated by BaP. The results put together indicated that E2 altered the biotransformation pathway regarding enzymes activated by BaP in Nile tilapia.
Resumo:
Cat's claw (Uncaria tomentosa) is an Amazon herb using in native cultures in Peru. In mammals, it has been described several effects of this herb. However, this is the first report of its use on the diet of fish. The aim of this study was to determinate the effect of this plant on the growth and immune activity in Oreochromis niloticus. Nile tilapia (81.3 ± 4.5 g) were distributed into 5 groups and supplemented with 0 (non-supplement fish), 75, 150, 300, and 450 mg of U. tomentosa.kg(-1) of diet for a period of 28 days. Fish were inoculated in the swim bladder with inactivated Streptococcus agalactiae and samples were taken at 6, 24, and 48 h post inoculation (HPI). Dose dependent increases were noted in some of the evaluated times of thrombocytes and white blood cells counts (WBC) in blood and exudate, burst respiratory activity, lysozyme activity, melanomacrophage centers count (MMCs), villi length, IgM by immunohistochemistry in splenic tissue, and unexpectedly on growth parameters. However, dietary supplementation of this herb did not affect red blood cells count (RBC), hemoglobin, and there were no observed histological lesions in gills, intestine, spleen, and liver. The current results demonstrate for the first time that U. tomentosa can stimulate fish immunity and improve growth performance in Nile tilapia.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)