421 resultados para LEVEXTREL RESIN
Resumo:
Objectives. This study evaluated the effect of two different surface conditioning methods on the repair bond strength of a bis-GMA-adduct/bis-EMA/TEGDMA based resin composite after three aging conditions.Methods. Thirty-six composite resin blocks (Esthet X, Dentsply) were prepared (5 mm x 6 mm x 6 mm) and randomly assigned into three groups for aging process: (a) immersion in citric acid (pH 3.0 at 37 degrees C, 1 week) (CA); (b) boiling in water for 8h (BW) and (c) thermocycling (x5000, 5-55 degrees C, dwell time: 30s) (TC). After aging, the blocks were assigned to one of the following surface conditioning methods: (1) silica coating (30 mu m SiOx) (CoJet, 3M ESPE) + silane (ESPE-Sil) (CJ), (2) phosphoric acid + adhesive resin (Single Bond, 3M ESPE) (PA). Resin composite (Esthet.X (R)) was bonded to the conditioned substrates incrementally and light polymerized. The experimental groups formed were as follows: Gr1:CA + PA; Gr2:CA + CJ Gr3:BW + PA; Gr4: BW + CJ; Gr5:TC + PA; Gr6: TC + CJ. The specimens were sectioned in two axes (x and y) with a diamond disc under coolant irrigation in order to obtain non-trimmed bar specimens (sticks, 10 mm x 1 mm x 1 mm) with 1 mm(2) of bonding area. The microtensile test was accomplished in a universal testing machine (crosshead speed: 0.5 mm min(-1)).Results. The means and standard deviations of bond strength (MPa +/- S.D.) per group were as follows: Gr1: 25.5 +/- 10.3; Gr2: 46.3 +/- 10.1; Gr3: 21.7 +/- 7.1; Gr4: 52.3 +/- 15.1; GrS: 16.1 +/- 5.1; Gr6, 49.6 +/- 13.5. The silica coated groups showed significantly higher mean bond values after all three aging conditions (p < 0.0001) (two-way ANOVA and Tukey tests, alpha = 0.05). The interaction effect revealed significant influence of TC aging on both silica coated and acid etched groups compared to the other aging methods (p < 0.032). Citric acid was the least aggressive aging medium.Significance. Chairside silica coating and silanization provided higher resin-resin bond strength values compared to acid etching with phosphoric acid followed by adhesive resin applications. Thermocycling the composite substrates resulted in the lowest repair bond strength compared to citric acid challenge or boiling in water. (C) 2006 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Purpose: To assess the effect of the composite surface conditioning on the microtensile bond strength of a resin cement to a composite used for inlay/onlay restorations.Materials and Methods: Forty-two blocks (6 x 6 x 4 mm) of a microfilled composite (Vita VMLC) were produced and divided into 3 groups (N = 14) by composite surface conditioning methods: Gr1 - etching with 37% phosphoric acid, washing, drying, silanization; Gr2 - air abrasion with 50-Im Al203 particles, silanization; Gr3 - chairside tribochemiCal silica coating (CoJet System), silanization. Single-Bond (one-step adhesive) was applied on the conditioned surfaces and the two resin blocks treated with the same method were cemented using RelyX ARC (dual-curing resin cement). The specimens were stored for 7 days in water at 37 degrees C and then sectioned to produce nontrimmed beam samples, which were submitted to microtensile bond strength testing (mu TBS). For statistical analysis (one-way ANOVA and Tukey's test, = 0.05), the means of the beam samples from each luted specimen were calculated (n = 7).Results: mu TBS values (MPa) of Gr2 (62.0 +/- 3.9a) and Gr3 (60.5 +/- 7.9a) were statistically similar to each other and higher than Gr1 (38.2 +/- 8.9b). The analysis of the fractured surfaces revealed that all failures occurred at the adhesive zone.Conclusion: Conditioning methods with 50-Im Al203 or tribochemical silica coating allowed bonding between resin and composite that was statistically similar and stronger than conditioning with acid etching.
Resumo:
An EPR approach to monitor peptide chain aggregation inside resin beads is introduced. Model low and highly peptide-loaded resins containing an aggregating sequence were labeled with a paramagnetic amino acid derivative and studied with regard to their solvation behavior in different solvent systems. For the first time in the peptide synthesis, EPR spectroscopic has allowed the detection of differentiated levels of peptide chain aggregation as a function of solvent and resin loading. (C) 1997, Elsevier B.V. Ltd. All rights reserved.