273 resultados para INTAKE
Resumo:
Noradrenaline (NOR) is a neurotransmitter presenl in the central nervous system which is related to the control of ingestive behavior of food and fluids. We describe here the relationship between NOR and intake of water and NaCl solution, fluids that are essential for a normal body fluid electrolytic balance. Central NOR has an inhibitory effect on fluid intake, but it either induces or not alterations in food intake. Several ways of inducing water intake, such as water deprivation, meal-associated water intake, administration of angiotensinergic, cholinergic or beta-adrenergic agonists, or administration of hyperosmotic solutions, are inhibited by alpha-adrenergic agonists. Need-induced sodium intake by sodium-depleted animals is also inhibited by alpha-adrenergic agonists. NOR can also facilitate fluid intake. Water intake is elicited by NOR and the integrity of central noradrenergic systems is necessary for a normal expression of water or salt intake in dehydrated animals. The angiotensinergic component of either behavior apparently depends on a central noradrenergic system. NOR probably facililates fluid intake by acting on postsynaptic receptors, but we do not know how it inhibits fluid infake. The inhibitory and facilitatory effects of NOR on ingestive behavior suggest a dual role for this neurotransmitter in the control of hydromineral fluid intake.
Resumo:
We studied the nicotine stimulation of the amygdaloid complex (AMG) on sodium and water intake in satiated and water-deprived rats. Nicotine produced no change in sodium or water intake in satiated animals when injected directly into the AMG. In water-deprived animals, nicotine injected into the AMG (basolateral nuclei) only blocked sodium chloride intake. We have previously demontrated that carbachol inhibits water and sodium intake in both satiated and water-deprived animals injected into the AMG. Injection of hexamethonium into the AMG totally blocked water intake in satiated and water-deprived animals. Hexamethonium injected into the AMG prior to nicotine produced no change in sodium intake. Thus, the present data suggest that sodium and water intake are mediated by a specific population of cholinoceptive neurons in the amygdaloid complex.
Resumo:
This study investigated the effects of an electrolytic lesion of the commissural subnucleus of the nucleus of the solitary tract (commNTS) on bodyweight, daily food and water intake, and plasma glucose and insulin in rats. In the first 6 days following brain surgery, commNTS lesioned rats reduced daily food intake by 80% compared to rats with sham lesions. After this period rats with lesions of commNTS started recovering food intake, but intake remained significantly reduced until the 12th day after surgery. A reduction in body weight was observed 4 days after surgery and reached a maximum on the 12th day. After this, a partial recovery of body weight was observed, but weight remained significantly reduced compared to weights of rats with sham lesions through the conclusion of the study. Food intake and body weight gain in other rats with partial lesions of the commNTS or with lesions outside the commNTS did not differ from rats with sham lesions with regard to those variables. Daily water intake and plasma glucose and insulin were not changed by the commNTS lesions. These results suggest that commNTS is involved with mechanisms that control food intake and body weight in rats.
Resumo:
The effect of noradrenaline, isoproterenol, phentolamine and propranolol, injected into the basolateral nuclei of the amygdala on water intake, was investigated in male Holtzman rats. The injection of noradrenaline (40 nmol) into the amygdaloid complex (AC) of satiated rats produced no change in water intake (0.05 ± 0.03 ml/1 hour). The injection of isoproterenol (40 nmol) produced an increase in water intake in sedated rats (1.93 ± 0.23 ml/1 hour). Noradrenaline injected into the AC produced a decrease in water intake in deprived rats (0.40 ± 0.19 ml/1 hour). The injection of isoproterenol into the AC of deprived rats produced no change in water intake in comparison with control (11.65 ± 1.02 and 10.92 ± 0.88 ml/1 hour, respectively). When compared with control values, phentolamine injected prior to noradrenaline blocked the inhibitory effect of noradrenaline on water intake in deprived rats (10.40 ± 1.31 ml/1 hour). Propranolol blocked the effect of isoproterenol in satiated rats (0.85 ± 0.49 ml/1 hour) and also blocked the water intake induced by deprivation (0.53 ± 0.38 ml/1 hour). In satiated and deprived animals the injection of phentolamine before hexamethonium blocked the inhibitory effect of hexamethonium on water intake. In satiated animals, when hexamethonium was injected alone, water intake was 0.39 ± 0.25 ml/1 hour and when hexamethonium was injected with phentolamine, water intake was 1.04 ± 0.3 ml/1 hour. In deprived animals, hexamethonium alone blocked water intake (0.40 ± 0.17 ml/1 hour) and when injected with phentolamine it elicited an intake of 9.7 ± 1.8 ml/1 hour. these results clearly demonstrate the participation of catecholaminergic receptors of the AC in the regulation of water intake.
Resumo:
The periventricular tissue of the anterior ventral portion of the third ventricle (AV3V) is an important area for the control of hydromineral balance and of cardiovascular function. The present work discusses the importance of the integrity of the AV3V for multiple responses to central cholinergic activation (water intake, hypertension, natriuresis, salivation) and for the control of salt intake.
Resumo:
Water and saline intake is controlled by several mechanisms activated during dehydration. Some mechanisms, such as the production of angiotensin II and unloading of cardiovascular receptors, activate both behaviors, while others, such as the increase in blood osmolality or sodium concentration, activate water, but inhibit saline intake. Aldosterone probably activates only saline intake. Clonidine, anα2-adrenergic agonist, inhibits water and saline intake induced by these mechanisms. One model to describe the interactions between these multiple mechanisms is a wire-block diagram, where the brain circuit that controls each intake is represented by a summing point of its respective inhibiting and activating factors. The α2-adrenoceptors constitute an inhibitory factor common to both summing points.
Resumo:
The subfornical organ (SFO) and the lateral hypothalamus (LH) have been shown to be important for the central action of angiotensin II (ANG II) on water and salt regulation. Several anatomical findings have demonstrated neural connections between the SFO and the LH. The present experiments were conducted to investigate the role of the α-adrenergic antagonists and agonists injected into the LH on the water and salt intake elicited by injections of ANG II into the SFO. Prazosin (an α1-adrenergic antagonist) injected into the LH increased the salt ingestion, whereas yohimbine (an α2-adrenergic antagonist) and propranolol (a β-adrenergic antagonist) antagonized the salt ingestion induced by administration of ANG II into the SFO. Previous administration of clonidine (an α2-adrenergic agonist) or noradrenaline into the LH increased, whereas pretreatment with phenylephrine decreased the sodium intake induced by injection of ANG II into the SFO. Previous treatment with prazosin and propranolol reduced the water intake induced by ANG II. Phenylephrine increased the dipsogenic responses produced by ANG II, whereas previous treatment with clonidine injected into the LH reduced the water intake induced by ANG II administration into the SFO. The LH involvement with SFO on the excitatory and inhibitory mechanisms related to water and sodium intake is suggested.
Resumo:
This study tested the hypothesis that high feed consumption will acutely decrease circulating progesterone concentrations. In the first experiment, a Latin Square design was used to test whether feeding pattern would alter circulating progesterone in pregnant lactating Holstein cows (n = 12). Feed was removed for 12 h before the experiment and cows were then either fed 100% of the total mixed ration (TMR), 50% of TMR every 12 h, 25% of TMR every 6 h, or left unfed for an additional 12 h. Blood samples were taken every hour for 24 h. Provision of 100 or 50% of TMR decreased circulating progesterone by 1 h after feeding and progesterone remained depressed until 8-9 h after feeding. Feeding 25% of TMR did not reduce circulating progesterone concentrations. Experiment 2 used a crossover design to measure the effect of acute feeding on circulating progesterone and LH concentrations during delivery of a constant amount of exogenous progesterone (Eazi-Breed CIDRs) in lactating Holstein cows (n = 8) and nonpregnant dry Holstein cows (n = 6). Blood samples were taken every 15 min for 8 h. There was no change in serum progesterone during the 8 h treatment period in unfed cows; however, feeding decreased (P < 0.05) circulating progesterone between 2 and 6 h after feeding. In lactating cows, feeding increased mean LH (P < 0.05). There were more LH pulses (P = 0.01) in lactating than nonlactating cows. Thus, acute feeding reduced circulating progesterone in pregnant lactating cows apparently due to an increase in progesterone metabolism. Interestingly, feeding multiple smaller meals eliminated the acute effect of feeding on circulating progesterone. © 2003 Published by Elsevier B.V.
Resumo:
As several structures of the central nervous system are involved in the control of hydromineral and cardiovascular balance we investigated whether the natriorhexigenic and pressor response induced by the injection of ANG II into the 3rd V could be mediated by vasopressinergic and nitrergic system. Male Holtzman rats weighing 200-250 g with cannulae implanted into the 3rd V were used. The drugs were injected in 0.5 μL over 30-60 sec. Controls were injected with a similar volume of 0.15 M NaCl. ANGII increased the water intake vs control. AVPA injected into 3rd V prior to ANGII decreased the dipsogenic effect of ANGII. L-arginine also decreased the water intake induced by ANGII. AVPA plus L-arginine inhibit the water intake induced by ANGII. 7NIT injected prior to ANGII potentiated the dipsogenic effect of ANGII. Pre-treatment with ANGII increased the sodium ingestion vs control. AVPA decreased the ANGII effect in sodium intake. L-arginine also decreased the natriorhexigenic effect of ANGII. The combination of L-arginine and AVPA inhibit the sodium intake induced by ANGII. 7NIT injected prior to ANGII potentiated the sodium intake induced by ANGII. ANGII induced an increase in Mean Arterial Pressure (MAP) vs control. AVPA and L-arginine induced a decreased in the pressor effect of ANGII. The combination of L-arginine and AVPA inhibit the pressor effect of ANGII. 7NIT injected prior to ANGII into 3rd V potentiated the pressor effect of ANGII. These data suggest that arginine vasopressin V 1 receptors and Nitric Oxide (NO) within the circumventricular structures may be involved in sodium intake and pressor response induced by the activation of ANGII receptors within the circumventricular neurons. These studies revealed the involvement of sodium appetite by utilizing the angiotensinergic, vasopressinergic and nitrergic system in the central regulation of blood pressure. © 2006 Asian Network for Scientific Information.
Resumo:
Whether the consumption of egg yolk, which has a very high cholesterol content without excess saturated fats, has deleterious effects on lipid metabolism is controversial. Absorbed dietary cholesterol enters the bloodstream as chylomicrons, but the effects of regular consumption of large amounts of cholesterol on the metabolism of this lipoprotein have not been explored even though the accumulation of chylomicron remnants is associated with coronary artery disease (CAD). We investigated the effects of high dietary cholesterol on chylomicron metabolism in normolipidemic, healthy young men. The plasma kinetics of a chylomicron-like emulsion, doubly-labeled with 14C-cholesteryl ester ( 14C-CE) and 3H-triolein ( 3H-TG) were assessed in 25 men (17-22 y old, BMI 24.1 ± 3.4 kg/m 2). One group (n = 13) consumed 174 ± 41 mg cholesterol/d and no egg yolk. The other group (n = 12) consumed 3 whole eggs/d for a total cholesterol intake of 804 ± 40 mg/d. The nutritional composition of diets was the same for both groups, including total lipids and saturated fat, which comprised 25 and 7%, respectively, of energy intake. Serum LDL and HDL cholesterol and apoprotein B concentrations were higher in the group consuming the high-cholesterol diet (P < 0.05), but serum triacylglycerol, apo AI, and lipoprotein (a) did not differ between the 2 groups. The fractional clearance rate (FCR) of the 14C-CE emulsion, obtained by compartmental analysis, was 52% slower in the high-cholesterol than in the low-cholesterol group (P < 0.001); the 3H-TG FCR did not differ between the groups. Finally, we concluded that high cholesterol intakes increase the residence time of chylomicron remnants, as indicated by the 14C-CE kinetics, which may have undesirable effects related to the development of CAD. © 2006 American Society for Nutrition.
Resumo:
The effects of two hypocaloric diets were evaluated, one with 29% and the other with 42% crude protein, on the body composition, nitrogen balance (NB), and some biochemical parameters of obese cats. A total of 16 castrated adult cats were used and divided into two groups of eight animals each. Body composition, determined by dual-energy x-ray absortiometry scanning, and biochemical examinations, were performed at the onset of the experiment (M0), at 10% of weight loss (M10), and at 20% of weight loss (M20) for each cat. The weekly weight loss (0.98 ± 0.37% for group 1; 0.94 ± 0.31% for group 2) and the ingestion of metabolizable energy (33.7 ±3.3 kcal/kg/day for group 1; 35.1 ±3.20 kcal/kg/day for group 2) did not differ between the groups. The NB was different at M0 (-70 ±110 mg/kg/day for group 1 ; 340 ±110 mg/kg/day for group 2) but roughly similar at M20 (140 ±170 mg/kg/day for group 1; 330 ± 410 mg/kg/day for group 2). The lean body mass (LM) loss was significant for group 1 (P < .05) in that it decreased from 2.789 ±198 g at M0 to 2.563 ±188 g at M20; for group 2, the changes in LM were not significant (P > .05). Reduction in body fat was significant between M0 and M20 for both diets (P < .05), without differences between treatments. The ingestion of digestible protein was greater (P < .05) for group 2 (3.20 ±0.29 g/kg/day) than for group 1 (2.21 ± 0.22 g/kg/day). There was a significant correlation between NB and ingestion of digestible protein at M0 (P < .05; r = 0.65), but this correlation was not observed at M20 (P > .05; r = 0.31). A significant reduction in plasma urea was observed for group 1 and in high-density lipoprotein cholesterol for group 2, but the other biochemical parameters did not change. The diet with higher protein content prevented LM loss. However, the lower-protein diet seems to maintain animal health and improve the cats' NB after weight loss.
Resumo:
We study the effects of angiotensin receptors antagonists, arginine vasopressin receptor antagonist, L-arginine and L-NAME, injected into supraoptic nucleus of the hypothalamus (SON) on sodium intake induced by the injection of angiotensin II (ANGII). Holtzman rats weighing 200-250 g with canulae implanted into the SON were used. The drugs were injected in 0.5 μL over 30-60 sec. Sodium intake after injection of saline SAL+SAL 0.15 M NaCl was 0.10±00.1 mL 2 h -1; SAL+ANGII injected into SON increased sodium intake. Losartan injected prior to ANGII into SON decreased sodium intake induced by ANGII. PD123319 injected prior to ANGII produced no changes in sodium intake induced by ANGII. AVPA receptor V 1 antagonist injected prior to ANGII reduced sodium intake with a less intensity than losartan. L-arginine injected prior to ANGII decreases sodium intake at a same intensity than losartan. L-NAME injected prior to ANGII potentiated sodium intake induced by ANGII. Losartan injected simultaneously with L-arginine prior to ANGII blocked the natriorexigenic effect of ANGII. These results confirm the importance of SON in the control of sodium intake. Also suggest that both AT 1 and arginine vasopressin V 1 receptors interact with nitrergic pathways within the SON influencing the sodium metabolism by changing sodium appetite induced by ANGII. © 2007 Asian Network for Scientific Information.
Resumo:
We determined the effects of AT 1 and AT 2 (selective no peptides antagonists angiotensin receptors), arginine vasopressin V 1 receptor antagonist as well as L-arginine, a nitric oxide donor and N W-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase inhibitor, injected into supraoptic nucleus (SON) on water and sodium intake induced by the injection of angiotensin II (ANGII). Male Holtzman rats weighing 200-250 g with canulae implanted into the SON were used. The drugs were injected in 0.5 μL over 30-60 sec. The water intake after injection of saline SAL+SAL 0.15 M NaCl was 0.40±0.1 mL 2 h -1; SAL+ANGII increase water intake. Losartan decreased the water intake induced by ANGII. PD123319 injected prior to produce no change in water intake induced by ANGII. AVPA prior to ANGII reduced the water intake with a less intensity than losartan. L-arginine prior to ANGII decreases the water intake at a same intensity than losartan. L-NAME prior to ANGII potentiated the dipsogenic effect of ANGII. Losartan injected simultaneously with L-arginine prior to ANGII blocked the dipsogenic effect of ANGII. These results confirm the importance of SON in the control of water intake and strongly suggest that AT 1, V 1 receptors interact with nitrergic pathways within the SON influencing the dipsogenic effect of ANGII.
Resumo:
α2-Adrenoceptor activation with moxonidine (α2-adrenergic/imidazoline receptor agonist) into the lateral parabrachial nucleus (LPBN) enhances angiotensin II/hypovolaemia-induced sodium intake and drives cell dehydrated rats to ingest hypertonic sodium solution besides water. Angiotensin II and osmotic signals are suggested to stimulate meal-induced water intake. Therefore, in the present study we investigated the effects of bilateral injections of moxonidine into the LPBN on food deprivation-induced food intake and on meal-associated water and 0.3 M NaCl intake. Male Holtzman rats with cannulas implanted bilaterally into the LPBN were submitted to 14 or 24 h of food deprivation with water and 0.3 M NaCl available (n = 6-14). Bilateral injections of moxonidine (0.5 nmol/0.2 μl) into the LPBN increased meal-associated 0.3 M NaCl intake (11.4 ± 3.0 ml/120 min versus vehicle: 2.2 ± 0.9 ml/120 min), without changing food intake (11.1 ± 1.2 g/120 min versus vehicle: 11.2 ± 0.9 g/120 min) or water intake (10.2 ± 1.5 ml/120 min versus vehicle: 10.4 ± 1.2 ml/120 min) by 24 h food deprived rats. When no food was available during the test, moxonidine (0.5 nmol) into the LPBN of 24 h food-deprived rats produced no change in 0.3 M NaCl intake (1.0 ± 0.6 ml/120 min versus vehicle: 1.8 ± 1.1 ml/120 min), nor in water intake (0.2 ± 0.1 ml/120 min versus vehicle: 0.6 ± 0.3 ml/120 min). The results suggest that signals generated during a meal, like dehydration, for example, not hunger, induce hypertonic NaCl intake when moxonidine is acting in the LPBN. Thus, activation of LPBN inhibitory mechanisms seems necessary to restrain sodium intake during a meal. © 2007 Elsevier B.V. All rights reserved.
Resumo:
This study evaluated the fluoride intake from dentifrices with different fluoride concentrations ([F]) by children aged 24-36 months, as well as the influence of the dentifrice flavor in the amount of fluoride ingested during toothbrushing. Thirty-three children were randomly divided into 3 groups, according to the [F] in the dentifrices: G-A (523 μgF/g), G-B (1,062 μgF/g) and G-C (1,373 μgF/g). Dentifrices A and B are marketed for children, while dentifrice C is a regular product. The amount of F ingested was indirectly obtained, subtracting the amount expelled and the amount left on the toothbrush from the amount initially loaded onto the brush. The results were analyzed by ANOVA, Tukey's test and linear regression analysis (p < 0.05). Children ingested around 60% of the dentifrice loaded onto the brush, but no significant differences were seen among the groups (p > 0.05). Mean daily fluoride intake from dentifrice for G-A, G-B and G-C was 0.022 a, 0.032 a and 0.061 b mg F/kg body weight, respectively (p < 0.01). There was a strong positive correlation (r = 0.86, p < 0.0001) between the amount of dentifrice used and the amount of fluoride ingested during toothbrushing. The results indicate the need for instructing children's parents and care givers to use a small amount of dentifrice (< 0.3 g) to avoid excessive ingestion of fluoride. The use of low-[F] dentifrices by children younger than 6 years also seems to be a good alternative to minimize fluoride intake. Dentifrice flavor did not influence the percentage of fluoride intake.