185 resultados para Glazing (Ceramics)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the study results with glass-ceramics obtained from base glass (MgO-Al2O3- SiO2-Li2O system) with addition of ZrO2 as nucleating agent. The glass was melted at 1650 degrees C for 3 h and at a heating rate of 10 degrees C/min. The molten glass was poured into a graphite mold to obtain monolithic samples and also in water in order to obtain particulate material. Such material was grinded and then pressed by both uniaxial and isostatic pressing methods before being sintered. Both the monolithic and pressed samples were performed under two different conditions of heat treatment so that their nucleation and crystallization occurred. In the first one, the samples were heated to 1100 degrees C with a heating rate of 10 degrees C/min. In the second one, there was an initial heating rate of 10 degrees C/min up to 780 degrees C, which was kept for 5 minutes. After that, the samples were heated to 1100 degrees C at a heating rate of 1 degrees C/min. Microhardness analyses showed that base glass presented values around 7.0 GPa. The glass-ceramics obtained from the powder sintering showed microhardness values lower than those obtained from monolithic samples. The highest hardness values were observed in the samples which were treated with two heating rates, whose values were around 9.2 +/- 0.5 GPa. Moreover, the glass-ceramics which were produced with an only heating rate, presented values around 7.1 +/- 0.2 GPa, very close to those observed in the base glass.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Pb1-xLaxTiO3 sintered ferroelectric ceramics with x equal to 0, 0.10, 0.15, 0.20, and 0.30 were studied by X-ray photoelectron spectroscopy (XPS). The binding energy of the Ti 2p lines is consistent with only one chemical state, Ti4+. on the other hand, in the case of Pb 4f and 0 Is XPS spectra, apart from the main peaks attributed to the lattice ions, minor peaks related to the surface states were also observed. The presence of Pb-0 state on the surface of all samples was due to the reduction of lead ions caused by the preferential removal of the oxygen ions after sputtering. The non observation of Ti3+ ions confirms that the mechanism of charge compensation that should occurs owing to the substitution of Ph2+ by La3+ is due to the preferential formation of Pb site vacancies, and not to a reduction from Ti4+ to Ti3+ states. Within the limits of the present experiment, there is no evidence of the existence of non-equivalent Pb, Ti, and La sites as the Pb1-xLaxTiO3 ceramic changes from a normal to a relaxor ferroelectric state. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Precursor glass and glass-ceramics with molar composition 2Na2O·1CaO·3SiO2 are studied by infrared, conventional, and microprobe Raman techniques. The Gaussian deconvoluted Raman spectrum of the glass presents bands at 625 and 660 cm-1, attributed to bending vibrations of Si-O-Si bonds, and at 860, 920, 975, and 1030 cm-1, attributed to symmetric stretching vibrations of SiO4 tetrahedra with 4, 3, 2, and 1 nonbridging oxygens, respectively. The Raman microprobe spectrum of a highly crystallized sample presents two narrow and intense bands at about 590 and 980 cm-1, associated with vibrations of SiO4 tetrahedra with two nonbridging oxygens, in agreement with the predicted chain-like structure of crystalline metasilicates. Scanning electron microscopy shows that the crystals distributed in partially crystallized samples have a spherical shape, built up by radially oriented needle-like single crystals. The Raman microprobe spectra of these spherulites show that they still contain residual amorphous material. A comparison of Raman and infrared spectra of amorphous and highly crystallized samples is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the currently strict environmental law in present days, researchers and industries are seeking to reduce the amount of cutting fluid used in machining. Minimum quantity lubrication is a potential alternative to reduce environmental impacts and overall process costs. This technique can substantially reduce cutting fluids in grinding, as well as provide better performance in relation to conventional cutting fluid application (abundant fluid flow). The present work aims to test the viability of minimum quantity lubrication (with and without water) in grinding of advanced ceramics, when compared to conventional method (abundant fluid flow). Measured output variables were grinding power, surface roughness, roundness errors and wheel wear, as well as scanning electron micrographs. The results show that minimum quantity lubrication with water (1:1) was superior to conventional lubrication-cooling in terms of surface quality, also reducing wheel wear, when compared to the other methods tested.