257 resultados para Flow cytometry
Resumo:
Pós-graduação em Ginecologia, Obstetrícia e Mastologia - FMB
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Introduction: Autohemotherapy is a type of treatment that have acquired an opposite role and have presented its efficiency strived by the medical community for many reasons. In this study we aimed to evaluate the effects of authohaemotherapy on hematological response. Method: We used Wistar female rats (300g). The study consisted in a control group and a treatment group, blood samples were collected at the first day and at the eighth day after the application. In the both groups we collected 300 μl of blood from each rat through a syringe with a previously prepared solution of 30 μl of sodium citrate 3.2%. In the autohemotherapy group the blood sample was immediately injected in the quadriceps muscle on the back of the thigh hind limb. Rats from the control group did not receive intramuscular blood application. The cellular count was done through flow cytometry and the samples were dosed for immunoglobulin. Results: In the both groups we observed increased production of erytrocites, hemoglobin and platelet (p<0.05). However, there was reduction of basophil in the control group and reduction of lymphocyte, monocyte and neutrophil in the both groups. No effects were observed in IgA, IgG and IgM levels. Conclusion: Autohemotherapy did not influence hematological responses in Wistar female rats.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: Glypican 3 (GPC3) is a member of the family of glypican heparan sulfate proteoglycans (HSPGs). The GPC3 gene may play a role in controlling cell migration, negatively regulating cell growth and inducing apoptosis. GPC3 is downregulated in several cancers, which can result in uncontrolled cell growth and can also contribute to the malignant phenotype of some tumors. The purpose of this study was to analyze the mechanism of action of the GPC3 gene in clear cell renal cell carcinoma.Methods: Five clear cell renal cell carcinoma cell lines and carcinoma samples were used to analyze GPC3 mRNA expression (qRT-PCR). Then, representative cell lines, one primary renal carcinoma (786-O) and one metastatic renal carcinoma (ACHN), were chosen to carry out functional studies. We constructed a GPC3 expression vector and transfected the renal carcinoma cell lines, 786-O and ACHN. GPC3 overexpression was analyzed using qRT-PCR and immunocytochemistry. We evaluated cell proliferation using MTT and colony formation assays. Flow cytometry was used to evaluate apoptosis and perform cell cycle analyses.Results: We observed that GPC3 is downregulated in clear cell renal cell carcinoma samples and cell lines compared with normal renal samples. GPC3 mRNA expression and protein levels in 786-O and ACHN cell lines increased after transfection with the GPC3 expression construct, and the cell proliferation rate decreased in both cell lines following overexpression of GPC3. Further, apoptosis was not induced in the renal cell carcinoma cell lines overexpressing GPC3, and there was an increase in the cell population during the G1 phase in the cell cycle.Conclusion: We suggest that the GPC3 gene reduces the rate of cell proliferation through cell cycle arrest during the G1 phase in renal cell carcinoma.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Mesenchymal stem cells (MSCs) are a heterogeneous population of cells that proliferate in vitro as plastic-adherent cells, have fibroblast-like morphology and can differentiate into bone, cartilage and fat cells. Therapeutic potential of MSCs have been studied in experimental models, such as rabbit, in Laboratory of Cell Engineering of Botucatu. However, no specific markers have been reported for expanded rabbit MSCs, which hampers the isolation of pure MSC populations by immunophenotypic characterization. Thus, the objective of this study was to produce monoclonal antibodies (mAbs) to rabbit MSCs. MSCs derived from rabbit bone marrow (BM) were isolated, cultured, expanded ex vivo, and immunized into three BALB/c mices, and spleen cells subsequently harvested were used to generate hibridoma cell lines secreting antibodies against MSCs. Hybridoma cells were screened by flow cytometry and antibody-producing cells were subjected to subsequent rounds of retests. MSC1-160 obtained the best positivity for IgG expression and was cloned by limiting dilutions and micromanipulation. Ascitic fluid from ten best clones was purified by affinity chromatography in Protein A-sepharose CL-4B column and purification control was performed by electrophoresis in agarose gels. The purified IgG were tested against rabbit MSCs, obtaining high positivity by flow Cytometry. In conclusion, we developed 10 mAbs, MSC1-160 A20, A30, A41, A47, A55, A60, A63, A69, A81, and A82, that recognize rabbit MSC cell surface antigens showing potential for immunophenotypic characterization of rabbit MSC cell lines
Resumo:
Apoptosis is a form of programmed cell death selectively removes abnormal cells, and thus contributes to maintaining the balance of the dynamics of cell reproduction. Therefore the verification of the occurrence of apoptotic cell death after a pathological stimulus is crucial for the analysis of the maintenance of normal cell cycle of a given tissue or organ. In this experiment were used cells lines human mammary tumor MDAMB231, T47, MCF7, which were irradiated with X-rays at a dose of 5 Gy in a time interval of 15 seconds, and filtration of 1mm aluminum. Samples containing the cells were grown in a specific culture medium, containing fetal bovine serum and growth factor, and two samples were prepared with each of the cell lines, one to be irradiated, and another that has not been irradiated, which denoted by negative control of the irradiation. The primary goal of the experiment was to verify and compare the rates of apoptosis in each cell lines, in which were irradiated and that were not irradiated, using flow cytometry as a method for detecting apoptotic cell death in together with specific markers annexin V and propidium iodide. Data from the readings made by flow cytometry were analyzed and interpreted using the software WinMDI statistical graph. By comparing the indices relating to the readings of positive and negative for specific markers of apoptosis, based on differences in the statistical data presented lectures regarding the cellular irradiated and not irradiated, collude cells in question once... (Complete abstract click electronic access below)
Resumo:
Muscular dystrophy refers to a group of more than 30 genetical disorders characterized by progressive weakness and degeneration of the skeletal muscle. No effective therapy is available at present. Recent studies have reported that the transplantation of stem cells can offer an important potential therapy for genetic diseases. Adult bone marrow mesenchymal stem cells have been identified as a nonhematopoietic stem cell population capable of self-renewal with the ability to differentiate into many cell lineages, including bone, fat, cartilage and connective tissue. Because of their similarity with muscle progenitor cells, when they are injected in affected individuals, they are able to migrate into areas of skeletal muscle degeneration and participate in the regeneration process. The adipose tissue represents an alternative source of MSCs that, as the MSCs derived from bone marrow, are capable of in vitro differentiation into osteogenic, adipogenic, myogenic and chondrogenic lineages. The objective of this project is to investigate the “in vitro” myogenic potential of mesenchymal stem cells derived from murine bone marrow and adipose tissue. Four experimental groups were analyzed: mice from lineages Lama2dy-2J/J and C57black and, C2C12 lineage cells and transformed C2C12 expressing the eGFP protein. MSCs cultures were obtained by flushing the bone marrow femurs and tibials with α-MEM or by the subcutaneous and inguinal fat from the mice. Their characterization was done by flow cytometry and in vitro differentiation. Muscle differentiation was studied through the analysis of the expression of transcriptional factors involved in muscle differentiation and/or the presence and amount of specific proteins from muscle differentiated cell. The pluripotency from bone marrow MSCs of the two lineages was evidenced and, in the muscular differentiation... (Complete abstract click electronic access below)
Resumo:
Preeclampsia (PE) is a pregnancy specific syndrome characterized by a systemic inflammatory response, with higher intensity than that observed in normal pregnancy. Cells of the immune system, such as monocytes and granulocytes are endogenously activated and secrete high levels of free radicals and inflammatory cytokines. The objective of this study was to assess the activation state of monocytes from pregnant women with preeclampsia by endogenous expression of TLR2 e TLR4 receptors and to correlate the expression of TLR2 and TLR4 on monocytes surface of pregnant women with PE with the production of tumor necrosis factor-alpha (TNF- and interleukin-10 (IL-10) by these cells stimulated or not with peptidoglycan (PG) and lipopolysaccharide (LPS), as agonists agents of TLR2 and TLR4, respectively. We evaluated 15 pregnant women with PE, 15 normotensive pregnant women (NT) and 15 non-pregnant (NP). Peripheral blood monocytes were incubates in the presence or absence of LPS or PG. The supernatant obtained after 18h of culture was aspirated and used for TNF- and IL-10 determination by enzyme immunoassay (ELISA). The endogenous expression of TLR2 and TLR4 receptors was evaluated by flow cytometry. Our results showed significant highly concentrations of TNF- and TLR4 expression in monocytes of preeclamptic women when compared with NT and NP. Normal pregnant women presented higher levels of IL-10 in comparison with PE and NP groups. TLR2 expression was similar in the three groups studied. Therefore, our study highlights the important role of TLR4 in PE and the consequent high production of TNF- by monocytes of these patients, as well as the potential mechanism involving low levels of IL-10 in the pathophysiology of the disease. These observations demonstrate the strong link between the pathology of PE and the immune system of these patients