235 resultados para Epoxy para cresol novolac (ECN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The increasing demand for electrical energy and the difficulties involved in installing new transmission lines presents a global challenge. Transmission line cables need to conduct more current, which creates the problem of excessive cable sag and limits the distance between towers. Therefore, it is necessary to develop new cables that have low thermal expansion coefficients, low densities, and high resistance to mechanical stress and corrosion. Continuous fiber-reinforced polymers are now widely used in many industries, including electrical utilities, and provide properties that are superior to those of traditional ACSR (aluminum conductor steel reinforced) cables. Although composite core cables show good performance in terms of corrosion, the contact of carbon fibers with aluminum promotes galvanic corrosion, which compromises mechanical performance. In this work, three different fiber coatings were tested (phenol formaldehyde resin, epoxy-based resin, and epoxy resin with polyester braiding), with measurements of the galvanic current. The use of epoxy resin combined with polyester braiding provided the best inhibition of galvanic corrosion. Investigation of thermal stability revealed that use of phenol formaldehyde resin resulted in a higher glass transition temperature. On the other hand, a post-cure process applied to epoxy-based resin enabled it to achieve glass transition temperatures of up to 200 degrees C. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background levels of exocyclic DNA adducts have been detected in rodent and human tissues. Several studies have focused on bifunctional electrophiles generated from lipid peroxidation as one of the endogenous sources of these lesions. We have previously shown that the reaction of 2'-deoxyguanosine (dGuo) with trans,trans-2,4-decadienal (DDE), a highly cytotoxic aldehyde generated as a product of lipid peroxidation in cell membranes, results in the formation of a number of different base derivatives. Three of these derivatives have been fully characterized as 1,N-2-etheno-2'-deoxyguanosine adducts. In the present work, four additional adducts, designated A3-A6, were isolated from in vitro reactions by reversed-phase HPLC and fully characterized on the basis of spectroscopic measurements. Adducts A3-A6 are four diastereoisomeric 1,N-2-hydroxyethano-2'-deoxyguanosine derivatives possessing a carbon side chain with a double bond and a hydroxyl group. The systematic name of these adducts is 6-hydroxy3-(2'-deoxy-beta-D-erythro-pentafuranosyl)-7-((E)-1-hydroxy-oct-2-enyl)-3,5,6,7-tetrahydro-imidazo- [1,2-a]purin-9-one. The proposed reaction mechanism yielding adducts A3-A6 involves DDE epoxidation at C2, followed by nucleophilic addition of the exocyclic amino group of dGuo to the C1 of the aldehyde and cyclization, via nucleophilic attack, on the C2 epoxy group by N-1. The formation of adducts A1-A6 has been investigated in acidic, neutral, and basic pH in the presence of H2O2 or tent-butyl hydroperoxide. Neutral conditions, in the presence of H2O2, have favored the formation of adducts A1 and A2, with minor amounts of A3-A6, which were prevalent under basic conditions. These data indicate that DDE can modify DNA bases through different oxidative pathways involving its two double bonds. It is important to structurally characterize DNA base derivatives induced by alpha,beta-unsaturated aldehydes so that the genotoxic risks associated with the lipid peroxidation process can be assessed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim To assess (i) heat generated by pluggers during warm vertical compaction of gutta-percha and investigation of temperature changes on the external root surface during canal filling, and (ii) the chemical changes of root canal sealers induced by heat.Methodology Four sealers, namely AH Plus, MTA Plus and two other experimental sealers based on tricalcium silicate, were characterised. External temperatures generated on the root surface during warm vertical compaction of gutta-percha with different sealers inside the root canal were monitored using an infrared thermography camera. Chemical changes induced by heating the sealers were assessed by Fourier transform infrared (FT-IR) spectroscopy.Results MTA Plus and the experimental sealers were composed of a cement and radiopacifier, with epoxy resin or a water-soluble polymer as dispersant, whilst AH Plus was epoxy resin-based. The heat generated at the tips of the continuous wave pluggers was found to be lower than the temperature set and indicated on the device LCD display. The sealers reduced the heat generated on the external root surfaces during the heating phase. AH Plus sustained changes to its chemical structure after exposure to heat, whilst the other sealers were unaffected.Conclusions The temperatures recorded at the tips of continuous wave pluggers varied with their taper and were lower than the temperature set on the System B LCD display. Root canal sealers reduced the dissipation of heat generated during warm vertical compaction, with the temperature at the external root surface maintained at 37-41 degrees C, a temperature below that is necessary to cause irreversible damage to bone and periodontium. The use of AH Plus sealer during warm vertical compaction techniques results in chemical changes in the sealer. The effect on sealer properties needs to be further investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fracture surfaces express the sequence of events of energy release due to crack propagation by linking the relief of the fracture to the loading stresses. This study aims to evaluate the heterogeneity of the critical zone for the advancement of the crack along its entire length in a thermoset composite carbon fiber and epoxy matrix, fractured in DCB testing (Double Cantilever Beam) and ENF (End-Notched Flexure). Investigations were made from image stacks obtained by optical reflection of extended depth from focus reconstruction. The program NIH Image J was used to obtain elevation map and fully focused images of the fracture surface, whose topographies were quantitatively analyzed. The monofractal behavior for DCB samples was assessed as being heterogeneous along the crack front and along the crack for all the conditionings. For the samples fractured in ENF test, there was a strong positive correlation to the natural condition, considering the fibers at 0° for the monofractal dimension and structural dimension (Df and Ds). For fibers at 90° to crack propagation, there was a moderate positive correlation for the textural dimension of natural condition. However, for the samples under ultraviolet condition and those subjected to thermal cycles, there was no correlation between the fractal dimension and fracture toughness in mode II

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years the aeronautic industries has increased investment in areas of technological research aiming at materials that offer better performance, safety, weight reduction and fuel consumption. For this reason the most studied materials are polymeric materials, due to their higher mechanical strength and higher stiffness. This work evaluated characteristics of two composite laminates produced from the same process, but they differed only in regions where the resin was injected and the vacuum position. The composite laminates were SC-79 resin reinforced with glass fiber fabric (plain weave) processed via VARTM. For this reason the material was subjected to mechanical tests such as: tensile, and fatigue following standards ASTM D 3039 and ASTM D 3479, respectively. The latter was observed the S-N curve. It was performed the ultrassonic C-scan analysis to check impregnation of the fiber. Considering that the process was the same for the two laminates, with small variations in the injection and in vacum ports, it was expected to find similar characteristics

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the emergence of new filling materials with different properties and behaviors, the approach of endodontic treatment must be readjusted so that the appropriate result can be achieved. New endodontic sealers include methacrylate resin-based, plant resin-based and the evolution of epoxy-based sealers. This study verified the behavior of new materials that presents controversial results in the literature, about coronal bacterial leakage. That for, 56 single-rooted human teeth were prepared in the direction crown-apex and filled with gutta-percha points with taper of 4% using the single cone technique. Roots were divided randomly into 4 groups according to the sealer (Apexit Plus, AH Plus, EndoREZ and Polifil). After filling, the roots were incorporated in a leakage model, which upper chamber contained a suspension of Streptococcus mutans, and lower chamber a broth, leaving 3 mm of root apical portion immersed. Leakage was assessed for turbidity in lower chamber every day for 60 days. Survival analysis was performed using the nonparametric Kaplan- Meier method (p<0,05). All experimental groups presented leakage during the study’s period, however the maximum time achieve was 22 days. The medium time of leakage was: Apexit Plus 6,3 days, AH Plus 6,3 days and Polifil 5,1 days, but in EndoREZ all specimens infiltrated in the first day, presenting shorter capacity of impermeabilization compared to the other groups. Concluding that none of the sealers tested was able to prevent coronal bacterial leakage

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In civil engineering, a structure is the whole sustainment of a construction and, thus, it is important that it remains intact throughout its lifetime. An engineering construction must last for decades without losing its functionality. However its purpose may be altered and several times the original structure does not meet the new needs of use. Still, in new buildings, the functionality is altered due to possible flaws in execution and the structure, invariably does not reach the desired solicitation needs. In cases like this, the commonly adopted solutions are, basically, the demolishment followed by the reconstruction of the desired mold or the structural reinforcement. This second option, for long years, has not been put to practice due to certain factors such as the high costs for its implantation, use of inadequate reinforcement execution techniques, and the culture of people involved in the area regarding its use and, in this case, the option would always be the reconstruction. Thoughtout the years, some techniques were developed to allow the execution of structural reinforcements with low costs and in efficient ways. An interesting, fast, efficient and economical technique is the structural reinforcement through metal sheets put together with epoxy resin that can be applied in beams, slabs and pillars. In the present work the different behavior of beams reinforced with this technique. Steel is a very recommended material for these reinforcements due to its characteristics related to traction, compression and the effectiveness of the technique related to its cost. For the attachment the epoxy resin is recommended, since it allows the joining of two materials, in this case, steel and concrete. The efficiency of this union is so considerably high that it rarely produces any flaws in adherence and, normally, when it happens it is due to problems in the execution process, not in the union of materials

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Technology is growing interest in the use of composites, due to the requirement of lighter materials and more resistant, factors essential to meet the project specifications and reduce the operational cost. In the production of high performance structural composites, considering the aerospace criteria, the domestic industry has shown interest in the process of resin transfer molding (RTM) for reproducibility and low cost. This process is suitable for producing components of polymeric composites with relatively simple geometries, consistent thicknesses, high quality finish with no size limitations. The objective of this work was machined carbon steel to make a matched-die tooling for RTM and produce two composite plates of epoxy resin and carbon fiber fabric with and without induced discontinuities, which were compared towards their impregnation with ultrasound, their properties via tensile tests and thermal analysis. In ultrasonic inspection, it was found good impregnation of the preform of both composites. In the thermal analysis it was possible to check the degradation temperature of the composites, the glass transition temperature and it was found that the composites showed no effective cure cycles, but presented good performance in the tensile test when compared with aluminum alloy 7050 T7451 . The results showed that the injection strategy was appropriate since the laminate exhibited a good quality for the proposed application

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocimum basilicum L., popularmente conhecido como manjericão, é uma planta pertencente à Lamiaceae, cujo óleo volátil possui diversas atividades biológicas, tais como antifúngica, antigiardíase, antioxidante, antibacteriana, antileishmaniose, inseticida, dentre outras. É constituído principalmente por monoterpenos, sesquiterpenos e fenilpropanoides. A composição de metabólitos secundários nas plantas, dos quais os óleos voláteis fazem parte, pode sofrer influência de diversos fatores. Neste trabalho, foi investigada a influência das doenças virais no perfil dos óleos voláteis do manjericão. Para isso, sementes de Ocimum basilicum L. cv. Genovese foram semeadas e mantidas em casa de vegetação. Ao atingirem tamanho adequado (dois pares de folhas acima das cotiledonares), foram inoculadas com vírus não identificado, isolado de manjericão, além do Cucumber mosaic virus (CMV) e Tobacco mosaic virus (TMV). O óleo volátil de plantas sadias e infectadas foi extraído por hidrodestilação em aparelho de Clevenger e analisado em cromatógrafo gasoso acoplado ao espectrômetro de massas. Os cromatogramas revelaram a presença de metileugenol e ρ- cresol,2,6-di-terci-butílico como principais componentes, sendo que a porcentagem de metileugenol diminuiu significativamente nas plantas infectadas com o vírus não identificado. Houve mudanças na composição do óleo volátil, sendo alguns componentes encontrados apenas nas plantas sadias e outros somente nas infectadas

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the increasing demand for electricity, the retraining of transmission lines is necessary despite environmental restrictions and crossings in densely populated areas to build new transmission and distribution lines. Solution is reuse the existent cables, replacing the old conductor cables for new cables with higher capacity power transmission, and control of sag installed. The increasing demand for electrical power has increased the electric current on the wires and therefore, it must bear out temperatures of 150°C or more, without the risk of the increasing sag beyond the established limits. In the case of long crossings or densely populated areas, sag is due to high weight of the cable on clearance. The cable type determines the weight, sag, height and the towers dimensions, which are the items that most influence the investment of the transmission line. Hence, to reduce both cost of investment and maintenance of the line, the use of a lighter cable can reduce both number and the height of the towers, with financial return on short and long term. Therefore, in order to increase the amount of transmitted energy and reduce the number of built towers and sag, is recommended in the current work substitute the current core material (steel or aluminium) for alternatives alloys or new materials, in this case a composite, which has low density, elevated stiffness (elasticity module), thus apply the pultruded carbon fiber with epoxy resin as matrix systems and perform the study of the kinetics of degradation by thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC), according to their respective standards

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years a great worldwide interest has arisen for the development of new technologies that enable the use of products with less environmental impact. The replacement of synthetic fiber plants is a possibility very important because this fiber is renewable, biodegradable and few cost and cause less environmental impact. Given the above, this work proposes to develop polymeric composites of epoxy resin and study the behavior of these materials. Both, the epoxy resin used as matrix in the manufacture of sapegrass fiber composite, as tree composites formed by: epoxy/unidirectional sapegrass long fiber, 75% epoxy/25% short fiber, by volume, and 80% epoxy/20% short fiber, by volume, were characterized by bending, and the composites produced with short fibers random were inspected by Optical Microscopy and Acoustics Inspection (C-Scan). For the analysis of the sapegrass fiber morphology, composites 75% epoxy/25% short fiber (sheet chopped) and 80% epoxy/20% short fiber images were obtained by optical microscope and the adhesion between polymer/fiber was visualized. As results, the flexural strength of composites epoxy/unidirectional long fibers, 75% epoxy/25% short fiber and 80% epoxy/20% short fiber were 70.36 MPa, 21.26 MPa, 25.07 MPa, respectively. Being that composite showed that the best results was made up of long fibers, because it had a value of higher flexural strength than other composites analyzed

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of technology for structural composites has as one of its ends form a set of materials that combine high values of mechanical strength and stiffness and low density. Today, companies like Embraer and PETROBRAS and research institutions like NASA, working with these materials with recognized advantages in terms of weight gain, increased performance and low corrosion. We have developed a systematic study to determine the bond strength between composite carbon fiber / epoxy and fiberglass / epoxy laminate both bonded to a carbon steel which are widely used in the petrochemical industry and repair. For morphological evaluation and bonding between materials of different natures, ultrasound analysis, optical microscopy and stereoscopy were performed. To simulate actual conditions, the composites were subjected to conditioning by using heat shock temperatures from -50 to 80 ° C for 1000 cycles for composite carbon fiber / epoxy composites and 2000 cycles for fiberglass / epoxy . The use of composites studied here proved to be efficient to perform repairs in metallic pipes with application petrochemical, as when exposed to sudden changes of temperature (-50 ° to 80 ° C) cycling at 1000 to 2000 times, its mechanical properties (shear and tensile) practically do not change

Relevância:

10.00% 10.00%

Publicador:

Resumo:

After confirming the high specific mechanical properties of composite materials by scientific studies conducted over the last decades, one of the challenges of this new class of materials is the ability to achieve mass production at a more affordable cost, which has become indispensable. The Resin Transfer Molding (RTM) is an excellent method for manufacturing composite materials. Despite being a process widely used by international companies in the production of high performance structural composites, only a short time the national aviation industry has shown interest in implementing this type of processing to more complex structures and greater structural responsibility. In aeronautical projects, the reproducibility and the relative low cost of this process, several studies have been performed in Brazil for learning and perfecting this technique. This process is suitable for producing polymer components both simple as complex geometry, and allows to achieve consistent thickness, with high quality finish and without limiting range. Polymeric composite components for the high mechanical stress applications such as aircraft structures, satellites, etc., require a strict control of volume fractions of the composite constituents, beyond the knowledge of their mechanical and thermal properties. Therefore, in this experimental work degree study on the mechanical, thermal and of porosity composites processed by RTM processed characterization was performed. This characterization was performed targeting a possible aerospace application of this composite material. For the production of composites, process equipment (RTM RTM injector Radius 2100cc) was used. The processed carbono/epoxy composites were characterized via flexure tests mechanically and thermally analysis via DMA, DSC and TGA. To determine the volume fraction of fibers, the composite samples were analyzed via matrix digestion (ASTM D3171) ... (Complete abstract click electronic access below)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of the present work was to evaluate Pinus’ glued laminated timber (glulam) beams and steel reinforced glulam beams, using PU mono-component adhesive in lamination step and epoxy adhesive to bond steel bars. The mechanical performance was verified through bending test, and the adopted method based on homogenized section, to considerate the differences between wood and steel mechanical properties. The homogenization section method proved itself effective in obtaining the stiffness of the parts in MLCA. The stiffness of reinforced beams increased 91% in comparison with glulam beams, differing only 5.5 % from value of stiffness calculated