219 resultados para Electric equipment
Resumo:
The paper describes the preliminary studies of University of Minho on the use of Electric Impedance/Resistance Tomography to assess masonry structures. The study is focused on the analysis of values of current and voltage resulting from the use of an electrical source with voltage and frequency values from a distribution network. The analysis is made from results obtained through computer simulations, using a three-dimensional model of the idealized masonry structures. A finite element program was used for the simulations. Three types of electrodes were used in simulations, and the analysis of the results led to significant conclusions. Later masonry specimens were built and a series of preliminary tests were carried out in the laboratory. The comparative analysis of simulated and experimental results allowed identifying the factors that have influence on the physical results.
Resumo:
Almost forty years computed tomography (CT) has been one of the most powerful tools in diagnostic imaging. However, this modality delivers relatively high doses to their patients. It is known that the inappropriate use and unnecessary radiation may be associated with a significant risk of cancer, especially in pediatric patients. Moreover, the quality assurance in CT, provided and required by Portaria 453/98 and the guide of the RE 1016/05, ensures that the images generated by computer tomography provide reliable diagnostic information with doses as low as reasonably achievable. This research aimed to make the quality control (QC) of CT equipment; establish a better relationship between dose and noise on the image to protocols of skull CT according to the study of optimization proposed in 2005 by Daros; and assess the dose distribution in different cranial organs for protocols of adult and pediatric use in the routine of the Department of Diagnostic Imaging of HCFMB-UNESP. The equipment used for testing QC, optimization and dosimetry was a third generation tomograph GE Sytec 3000i
Resumo:
Electrical energy is present in the lives of all people and is extremely important that it be delivered to end users with plenty of quality, safety and low costs. The electric power substations are responsible for transmission and distribution of electricity generating sources to consumers, and with technological advances and the subsequent automation of same, the electricity began to be delivered with greater continuity and reliability. Protection systems in substations are largely responsible for making the electricity reaches the final consumer with quality, since their function is to prevent the spread of any type of failure occurred at any point of transmission to the load centers. These systems consist primarily by the current transformers and potential, by the protective relays and circuit breakers and switchgear. The processors send the necessary data to the relays and, if those detect any abnormality in the system, operate the opening command of the branch circuit breakers to isolate where the fault. Therefore, it is essential to better understand the operation of such equipment, as well as the overall system. This work aims to study the main substation equipment, current transformers and potential and, especially, protection relays, in order to obtain the advantages that automated systems can provide
Resumo:
During the twentieth century the inorganic electronics was largely developed being present in various industrial equipment or household use. However, at the end of that century were verified electronic properties in organic compounds, giving rise to the field of organic electronics. Since then, the physical properties of elementary devices such as diodes and organic transistors have been studied. In this work was studied the properties of diode devices fabricated with a semiconductor polymer, the poly-o-methoxyaniline (POMA). Devices containing electrodes of Au and Al were fabricated with semiconductor polymer of different doping levels. We found that the rectifying behavior for the heterojunctions metal/polimer are reached only for high doping level (with conductivity greater than 1,77. 10-9 S / cm), which gives the devices characteristic of a Schottky diode. The rectifying behavior was observed for electric fields of low magnitude, below the operating field (~ 600 V/cm), while for electric field greater than 600 V/cm the a linear behavior I vs.V was obtained. We determined that this Ohmic behavior arises from the charge transport over the volume of the semiconductor material after the lowering of the metal/semiconductor barrier. In devices with weakly doped semiconductor, the electrical resistance of the volume becomes high and the process of charge transportation is dominated by the volume, for any intensity of the applied electric field
Resumo:
Large electric motors require greater care when driving, especially during continuous operation since they are part of day-to-day manufacturing sector, acting essentially to ensure that no damage occurs to the production process and equipment that are part of the same system. This work includes the analysis of electrical protection in a system comprised of a three phase induction motor driven by a frequency converter as well as an analysis of the functions of a multifunction electronic relay. It is presented a comparison between the existing functions in a converter and a relay and a real case is described in order to exemplify the use of an electric motor and features that are aimed at their protection, and the system in which it is inserted. Based on the results, it is of great importance in this field of performance studies, generating relevant results, which may be exposed in order to unify into a single document, different sources of information that are arranged randomly, improve utilization motor and extend the life of equipment forming part of the electrical installation
Resumo:
The best way to detect breast cancer is by screening mammography. The mammography equipments are dedicated and require a rigorous quality control in order to have a good quality image and to early detect this disease. The digital equipment is relatively new in the market and there isn’t a national rule for quality control for several types of digital detectors. This study has proposed to compare two different tests manuals for quality control provided by the manufacturers of digital mammography equipments, and also compare them to the “European guidelines for quality assurance in breast cancer screening and diagnosis “(2006). The studied equipments were: Senographe 2000D from General Electric (GE) and the Hologic Selenia Lorad. Both were digital mammography equipments, the GE unit presents an indirect digital system and the other presents a direct digital system. Physical parameters of the image have been studied, such as spatial resolution, contrast resolution, noise, signal-tonoise ratio, contrast-to-noise ratio and modulation transfer function. After that, a study of the importance of quality control and the requirement to implement a Quality Assurance Program has been done. One data collection was done to compare those manual, it was done by checking which tests are indicated and the minimum frequency which they should be conducted in accordance with each manufacturer. The tests were performed by different methodologies and the results were compared. The examined tests were: the breast entrance skin dose, mean glandular dose, contrast-to-noise ratio, signal-to-noise ratio, automatic exposure control and automatic control of density, modulation transfer function, equipment resolution, homogeneity and ghost
Resumo:
In the industrial environment the challenge is use better the productive resources: people and machine. The following work has the main goal improve the efficient losses analysis in the stator bar’s production bottleneck equipment situated in the Electric generator’s factory. The action research involved Theory of Constraints on the restriction system identification and developed the data collection framework by losses typology for indicator measurement. The research showed the data collection standardization importance to obtain reliable data and strategic efficiency indicator to optimize equipments. Besides of this, OEE and TEEP indicator demonstrated efficiency results to analyze the actual efficiency when the machine works and the increase capacity opportunity to treat the hide costs in the organization following the continuous improvement
Resumo:
Electrical installations in industries involving high currents and voltages considered. On the other side is the common appearance of electrical failures, caused by human error, defects in electrical equipment or electrical installation aging itself. These failures are varied, those with the highest rate of occurrence and cause much damage to electrical installations, are overcurrent and overvoltage. Therefore there is a need to project a system that can detect and minimize possible effects caused by faults in electrical installations industries. Protection systems in electric industries emerge as an alternative to control especially voltage and current magnitudes. Engineered based on the functions of the relays, protection systems are an indispensable tool for any industrial substation. But the project of such systems becomes increasingly more complex, due to technological development. Electrical equipment not develop at the same speed that the protective devices (relays), making it indispensable knowledge of integration of technologies
Resumo:
The steel type AISI 4130 (ultra-high strength steel) is an alloy of low carbon and its main alloying elements are chromium and molybdenum, which improves the toughness of the weld metal. It has numerous applications, especially where the need for high mechanical strength. It is widely used in equipment used by the aviation industry, such as cradle-tomotor, and this is the motivation for this study. Cots are of fundamental importance, because the engine supports and maintains balance in the fixed landing gear. This equipment is subjected to intense loading cycles, whose fractures caused by fatigue are constantly observed. Will be determined the effects caused by re-welding the structure of aeronautical equipment, and will also study the microstructure of the metal without welding. The studies will be done on materials used in aircraft, which was given to study. The results provide knowledge of microstructure to evaluate any type of fracture that maybe caused by fatigue. Fatigue is a major cause of aircraft accidents and incidents occurred, which makes the study of the microstructure of the metal, weld and re-solder the knowledge essential to the life of the material. The prevention and control of the process of fatigue in aircraft are critical, since the components are subjected to greater responsibility cyclic loading
Resumo:
In the industries of wood processing (sawmills), where timber is sawn in equipment such as band saws, circular saws, trowel, thicknessers, among others, that mechanically transform this resource and use of electric motors, which are not unusually poorly scaled working or overloaded, often a factor that is not found in these industries and has fundamental importance in the production process is energy efficiency that is achieved by both technological innovation and through all the practices and policies that aim to lower energy consumption, lowering energy costs and increasing the amount of energy offered no change in generation. For both during the design of an electrical installation, both overall and in various sectors of the installation, investigations are necessary, considerations and uses of variables and factors that put into practice the theme of energy efficiency. Therefore, in this paper, these factors were calculated and analyzed for a wood processing industry (sawmill) in the municipality of Taquarivaí - SP, namely: active power, power factor, demand factor and load factor. Where they were small in relation to the literature, these events that occur when devices are connected at the same time and due to the conditions of processing the wood, where the engines have large variations in electricity consumption during the unfolding of the same, due to efforts with the load and idle moments between each machining operation in the equipment
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The present work shows a coupling of electrical and gravitational fields through Cauchy-Riemann conditions for quaternions present in a previous paper [1]. It is also obtained an extended version of the Laplace-like equations for quaternions, now written in terms of both electric and gravitational fields.
Resumo:
The reason of this work is perform a study about using of electrical energy to identify the opportunities through rational use of electrical energy. For that it was necessary perform an analysis of hired energy against consumption. Based in a guide of energy analysis were found the main consumers and verified the main problems, which generate excessive use of electrical energy in a plastic injection factory. It was also analyzed the painting line because there are some thermal equipment that use electrical energy. Based on the data obtained will be proposed ways to reduce the needless consumption and energy use of rationally and efficiently, in addition to re-evaluate the contracted demand based on the new policy of supplying and charging.It were also proposed thermodynamics solutions to reduce the energy consumed in thermal process
Resumo:
The intended purpose of this paper is to present the main commissioning tests for power transformers and the most used techniques in industrial segment, it is also discussed your results and consequences in the equipment’s normal operation. Also in this text, it is given specific information concerning a maintenance plan compatible to power transformers, with elements of preventive and predictive maintenance, exposing essential components, tests and the regulations current, showing how analyze and interpreted the results from this maintenance resources. Also in this paper is submitted the economic impact of damage to transformers and how the correct maintenance method can minimize them. The objective of this text is demonstrate the importance of the equipment and the benefits of proper maintenance, much of in financial terms as in electric system reliability
Resumo:
Due to concerns about rational use of energy, several alternative technologies of power generation appeared, including the conversion of solar energy into electrical energy by photovoltaic panels. In low-income households, the refrigerator represents considerable impact on the electric bill, since it requires constant power given its use in food preservation. It is possible to reduce this share, with the use of an alternative energy source. This work presents a timed switching electronic system, which allows commercial equipment that is not affected by short interruptions in the power supply to use a photovoltaic panel as a source of alternative energy, which usually do not provide energy continuously. Switching is made automatically in case of low incidence of sunlight, and without any form of energy storage. Between each switching, there is a dead time without power supply, therefore preventing the use of synchronizers circuits between the photovoltaic panel and the public power grid. A circuit containing a 80C31 microcontroller is used to control the system’s switching. The photovoltaic panel’s voltage inverter is in H bridge configuration, and is also controlled by the microcontroller through Pulse Width Modulation, which makes use of preprogrammed tables to generate the control signals of the power transistors. Through the use of software simulations, the proposed system was tested, which is capable of supplying intermittent single-phase loads. The simulations indicates that the project developed in this paper can be assembled into a prototype and be tested under real operating conditions, as long as the scaling of components, the characteristics of the photovoltaic panel to be used, and the project involved load are taken into account