187 resultados para Distributed Order Differential Equation
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A measurement of differential cross sections for the production of a pair of isolated photons in proton-proton collisions at root s = 7 TeV is presented. The data sample corresponds to an integrated luminosity of 5.0 fb(-1) collected with the CMS detector. A data-driven isolation template method is used to extract the prompt diphoton yield. The measured cross section for two isolated photons, with transverse energy above 40 and 25 GeV respectively, in the pseudorapidity range vertical bar eta vertical bar < 2.5, vertical bar eta vertical bar (sic) [1.44, 1.57] and with an angular separation Delta R > 0.45, is 17.2 +/-0.2 (stat) +/-1.9 (syst) +/- 0.4 (lumi) pb. Differential cross sections are measured as a function of the diphoton invariant mass, the diphoton transverse momentum, the azimuthal angle difference between the two photons, and the cosine of the polar angle in the Collins-Soper reference frame of the diphoton system. The results are compared to theoretical predictions at leading, next-to-leading, and next-to-next-to-leading order in quantum chromodynamics.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A transmission line is characterized by the fact that its parameters are distributed along its length. This fact makes the voltages and currents along the line to behave like waves and these are described by differential equations. In general, the differential equations mentioned are difficult to solve in the time domain, due to the convolution integral, but in the frequency domain these equations become simpler and their solutions are known. The transmission line can be represented by a cascade of π circuits. This model has the advantage of being developed directly in the time domain, but there is a need to apply numerical integration methods. In this work a comparison of the model that considers the fact that the parameters are distributed (Universal Line Model) and the fact that the parameters considered concentrated along the line (π circuit model) using the trapezoidal integration method, and Simpson's rule Runge-Kutta in a single-phase transmission line length of 100 km subjected to an operation power. © 2003-2012 IEEE.