205 resultados para Cholesteric Cellulose Derivatives
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The oxidation of ethanol (EtOH) at Pt(111) electrodes is dominated by the 4e path leading to acetic acid. The inclusion of surface defects such as those present on stepped surfaces leads to an increase of the reactivity towards the most desirable 12e path leading to CO2 as final product. This path is also favored when the methyl group is more oxidized, as in the case of ethylene glycol (EG) that spontaneously decomposes to CO on Pt(111) electrodes, thus showing a more effective breaking of the C-C bond. Some trends in reactivity can be envisaged when other derivative molecules are compared at well-ordered electrodes. This strategy was used in the past, but the improvement in the electrode pretreatment and the overall information available on the subject suggest that relevant information is still missing.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Mechanical, thermal, and barrier properties of methylcellulose/cellulose nanocrystals nanocomposites
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Hydrogen is known as a clean energy resource. The biological production of hydrogen has been attracting attention as an environmentally friendly processs that does not consume fossil fuels. Cellulosic plant and waste materials are potential resources for fermentative hydrogen production. Cellulose is a linear biopolymer of glucose molecules, connected by β-1,4-glycosidic bonds. Enzymatic hydrolysis of cellulose requires the presence of cellulase. The present study aimed to investigate the efficiency of acid pretreatment on ruminal fluid in order to enrich H2 producing bacteria consortia to enhance biohydrogen rate and substrate removal efficiency. In this study, fermentative hydrogen producers were enriched on cellulose (2g/L) in a modificated Del Nery medium (DNM) at 37ºC and initial pH 7.0 using rumen fluid (10% v/v) as inoculum. To increase the hydrogen production it was added cellulose (10mL) to the medium. The gas products (mainly H2 and CO2) was analyzed by gas chromatography (Shimadzu GC 2010) using a thermal conductivity detector. The volatile fatty acids and ethanol were also detected by GC using a flame ionization detector. Cellulose degradation was quantified by using the phenolsulfuric acid method. Analysis showed that the biogas produced from the anaerobic fermentation contained only hydrogen and carbon dioxide, without detectable methane after acid pretreatment test. On DNM the hydrogen production started with 4 h (5,3 x 105 mmol H2/L) of incubation, and the maximum H2 concentration was observed with 34 h (7,1 x 106 mmol H2/L) of incubation. During the process, it was observed a predominance of acetic acid and butyric acid as well as a low production of acetone, ethanol and nbutanol in all experimental phases. Butyrate accounted for more than 77% of total. As a result of the accumulation of volatile fatty acids (VFAs), the pH value in anaerobic digestion system was reduced to 4,0. On microscopy analyses there were observed rods with endospores. The batch anaerobic fermentation assays performed on anaerobic mixed inoculum from rumen fluid demonstrated the feasibility of H2 generation utilizing cellulose as substrate. Based on the results, it can be concluded that the acid treatment was efficient to inhibit the methanogenic archaea cells present in rumen fluid. The rumen fluid cells present a potential route in converting renewable biomass such as cellulose into hydrogen energy.
Resumo:
This study aimed to evaluate the potential of bacterial cellulose-hydroxyapatite (BC-HA) composites associated with osteogenic growth peptide (OGP) or pentapeptide OGP(10–14) in bone regeneration in critical-size calvarial defects in mice. In this study, the BC-HA, BC-HA-OGP, and BC-HA-OGP(10–14) membranes were analyzed at 3, 7, 15, 30, 60, and 90 days. In each period, the specimens were evaluated by micro-computed tomography (µCT), descriptive histology, gene expression of bone biomarkers by qPCR and VEGFR-2 (vascular endothelial growth factor) quantification by ELISA. Three days post-operative, Runx2, Tnfrsf11b and Bglap bone biomarkers were upregulated mainly by BC-HA OGP and BC-HA OGP(10–14) membranes, suggesting an acceleration of the osteoblast differentiation/activity with the use of these biomaterials. At 60 and 90 days, a high percentage of bone formation was observed by µCT for BC-HA and BC-HA OGP(10–14) membranes. High expression of some bone biomarkers, such as Alpl, Spp1, and Tnfrsf11b, was also observed for the same membranes on days 60 and 90. In conclusion, the BC-HA membrane promoted a better bone formation in critical-size mice calvarial defects. Nevertheless, incorporation of the peptides at the concentration of 10−9 mol L−1 did not improve bone regeneration potential in the long-term.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Antitrypanosomal acetylene fatty acid derivatives from the seeds of porcelia macrocarpa (annonaceae)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)