205 resultados para Chitosan scaffold


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this literature review is to present the state-of-the-art on the application of tissue engineering techniques in sinus lifts procedures, reporting the influence of these techniques in increasing bone height and volume in the maxillary sinus, and the osseointegration of the implants installed in the grafted areas. PubMed and Scopus databases were searched using the keywords “scaffold” OR “engineered tissue” AND “sinus augmention” OR “sinus floor elevation”. In the initial search 463 articles were selected, of which 19 were selected abstracts reading, with nine papers selected by the end, for evaluation of the application of tissue engineering techniques in sinus lift procedures. Despite the positive results of tissue engineering procedures in sinus floor elevation reported in the selected articles, further studies are still needed, for a better standardization of experimental models and materials used, leading to definitive conclusions about the effects of the application of tissue engineering procedures on bone formation in maxillary sinus lifting procedures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Pesquisa e Desenvolvimento (Biotecnologia Médica) - FMB

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Cirurgia Veterinária - FCAV

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The anticancer drug paclitaxel was encapsulated into a bio-nanocomposite formed by magnetic nanoparticles, chitosan and apatite. The aim of this drug carrier is to provide a new perspective against breast cancer. The dynamics of the pure and encapsulated drug were investigated in order to verify possible molecular changes caused by the encapsulation, as well as to follow which interactions may occur between paclitaxel and the composite. Fourier transformed infrared spectroscopy, thermal analysis, inelastic and quasi-elastic neutron scattering experiments were performed. These very preliminary results suggest the successful encapsulation of the drug.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Antibiotic-containing polymer-based nanofibers (hereafter referred to as scaffolds) have demonstrated great potential for their use in regenerative endodontics from both an antimicrobial and cytocompatibility perspective. This study sought to evaluate in vitro the effects of ciprofloxacin (CIP)-containing polymer scaffolds against Enterococcus faecalis biofilms. Methods: Human mandibular incisors were longitudinally sectioned to prepare radicular dentin specimens. Sterile dentin specimens were distributed in 24-well plates and inoculated with E. faecalisfor biofilm formation. Infected dentin specimens were exposed to 3 groups of scaffolds, namely polydioxanone (PDS) (control), PDS + 5 wt% CIP, and PDS + 25 wt% CIP for 2 days. Colony-forming units (CFU/mL) (n = 10) and scanning electron microscopy (SEM) (n -= 2) were performed to quantitatively and qualitatively assess the antimicrobial effectiveness, respectively. Results: PDS scaffold containing CIP at 25 wt% showed maximum bacteria elimination with no microbial growth, differing statistically (P < .05) from the control (PDS) and from PDS scaffold containing CIP at 5 wt%. Statistical differences (P < .05) were also seen for the CFU/mL data between pure PDS (5.92-6.02 log CFU/mL) and the PDS scaffold containing CIP at 5 wt% (5.39 5.87 log CFU/mL). SEM images revealed a greater concentration of bacteria on the middle third of the dentin specimen. after 5 days of biofilm formation. On scaffold exposures, SEM images showed similar results when compared with the CFU/mL data. Dentin specimens exposed to PDS + 25 wt% CIP scaffolds displayed a practically bacteria-free surface. Conclusions: On the basis of the data presented, newly developed antibiotic-containing electrospun scaffolds hold promise as an intracanal medicament to eliminate biofilm/infection before regenerative procedures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AimThe aim of this study was to evaluate the healing of autologous bone block grafts or deproteinized bovine bone mineral (DBBM) block grafts applied concomitantly with collagen membranes for horizontal alveolar ridge augmentation.Material and methodsIn six Labrador dogs, molars were extracted bilaterally, the buccal bony wall was removed, and a buccal box-shaped defect created. After 3months, a bony block graft was harvested from the right ascending ramus of the mandible and reduced to a standardized size. A DBBM block was tailored to similar dimensions. The two blocks were secured with screws onto the buccal wall of the defects in the right and left sides of the mandible, respectively. Resorbable membranes were applied at both sides, and the flaps sutured. After 3months, one implant was installed in each side of the mandible, in the interface between grafts and parent bone. After 3months, biopsies were harvested and ground sections prepared to reveal a 6-month healing period of the grafts.Results776.2% and 5.9 +/- 7.5% of vital mineralized bone were found at the autologous bone and DBBM block graft sites, respectively. Moreover, at the DBBM site, 63 +/- 11.7% of connective tissue and 31 +/- 15.5% of DBBM occupied the area analyzed. Only 0.2 +/- 0.4% of DBBM was found in contact with newly formed bone. The horizontal loss was in a mean range of 0.9-1.8mm, and 0.3-0.8mm, at the autologous bone and DBBM block graft sites, respectively.ConclusionsAutologous bone grafts were vital and integrated to the parent bone after 6months of healing. In contrast, DBBM grafts were embedded into connective tissue, and only a limited amount of bone was found inside the scaffold of the biomaterial.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)