257 resultados para Aniline Compounds
Resumo:
Thermal stability and thermal decomposition of succinic acid, sodium succinate and its compounds with Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and Zn(II) were investigated employing simultaneous thermogravimetry and differential thermal analysis (TG-DTA) in nitrogen and carbon dioxide atmospheres and TG-FTIR in nitrogen atmosphere. On heating, in both atmospheres the succinic acid melt and evaporate, while for the sodium succinate the thermal decomposition occurs with the formation of sodium carbonate. For the transition metal succinates the final residue up to 1180 °C in N 2 atmosphere was a mixture of metal and metal oxide in no simple stoichiometric relation, except for Zn compound, where the residue was a small quantity of carbonaceous residue. For the CO 2 atmosphere the final residue up to 980 °C was: MnO, Fe 3O 4, CoO, ZnO and mixtures of Ni, NiO and Cu, Cu 2O.
Resumo:
In the present communication, by using dielectric spectroscopy measurement, the correlations between Nanosized Barrier Layer Capacitance (NBLC) (Bueno et al. (2009) [7]) and the high frequency polaronic near-Debye dipolar relaxation found in CaCu3Ti4O12 compounds was discussed. The polaronic process was confirmed to be closely associated with the ultrahigh dielectric features of CaCu3Ti4O12 materials and its concomitant dielectric loss. Herein, the shift in relaxation frequency as a function of temperature was used for calculating the activation energy for hopping electronic conduction. The value obtained was 33 meV, an energy whose magnitude is compatible and confirmed the hypothesis of polaronic features for this high frequency dipolar relaxation process. Furthermore, it is shown that the nanosized barrier inferred from the NBLC model has a polaronic feature with dielectric permittivity exiting orthogonally to dielectric loss, a phenomenological pattern that contradicts the normally observed behavior for traditional dielectrics but explain the dielectric and conductivity feature of CaCu3Ti4O12 compounds. © 2010 Elsevier Ltd. All rights reserved.
Resumo:
The phytochemical study of Virola sebifera leaves led to the isolation of three lignans: (+)-sesamin, (-)-hinokinin, and (-)-kusunokinin and three flavonoids: quercetin-3-O - L-rhamnoside, quercetin-3-O - D-glucoside, and quercetin-3-methoxy-7-O - D-glucoside by using techniques as high-speed counter-current chromatography and high-performance liquid chromatography. The crude extracts, fractions, and isolated compounds were evaluated for their insecticidal and fungicidal potential against Atta sexdens rubropilosa and its symbiotic fungus Leucoagaricus gongylophorus. The bioassay results showed a high insecticidal activity for the methanol crude extract of the leaves of V. sebifera and its n-hexane, dichloromethane and ethyl acetate fractions. The fungicidal bioassay revealed high toxicity of the lignans against L. gongylophorus. © 2012 Keylla Utherdyany Bicalho et al.
Resumo:
Amino acids are well known to be an important class of compounds for the maintenance of body homeostasis and their deficit, even for the polar neuroactive aminoacids, can be controlled by supplementation. However, for the amino acid taurine (2-aminoethanesulfonic acid) this is not true. Due its special physicochemical properties, taurine is unable to cross the blood-brain barrier. In addition of injured taurine transport systems under pathological conditions, CNS supplementation of taurine is almost null. Taurine is a potent antioxidant and anti-inflammatory semi-essential amino acid extensively involved in neurological activities, acting as neurotrophic factor, binding to GABA A/glycine receptors and blocking the excitotoxicity glutamate-induced pathway leading to be a neuroprotective effect and neuromodulation. Taurine deficits have been implicated in several CNS diseases, such as Alzheimer's, Parkinson's, epilepsy and in the damage of retinal neurons. This review describes the CNS physiological functions of taurine and the development of new derivatives based on its structure useful in CNS disease treatment.&; 2012 by the authors; licensee MDPI, Basel, Switzerland.
Resumo:
Dengue virus is a mosquito-borne flavivirus that has a large impact in global health. It is considered as one of the medically important arboviruses, and developing a preventive or therapeutic solution remains a top priority in the medical and scientific community. Drug discovery programs for potential dengue antivirals have increased dramatically over the last decade, largely in part to the introduction of high-throughput assays. In this study, we have developed an image-based dengue high-throughput/high-content assay (HT/HCA) using an innovative computer vision approach to screen a kinase-focused library for anti-dengue compounds. Using this dengue HT/HCA, we identified a group of compounds with a 4-(1-aminoethyl)-N-methylthiazol-2-amine as a common core structure that inhibits dengue viral infection in a human liver-derived cell line (Huh-7.5 cells). Compounds CND1201, CND1203 and CND1243 exhibited strong antiviral activities against all four dengue serotypes. Plaque reduction and time-of-addition assays suggests that these compounds interfere with the late stage of viral infection cycle. These findings demonstrate that our image-based dengue HT/HCA is a reliable tool that can be used to screen various chemical libraries for potential dengue antiviral candidates. © 2013 Cruz et al.
Resumo:
Molecules containing the guanidinic nuclei possess several pharmacological applications, and knowing the preferred isomers of a potential drug is important to understand the way it operates pharmacologically. Benzoylguanidines were synthesized in satisfactory to good yields and characterized by NMR, Electrospray Ionization Mass Spectrometry (ESI-MS) and Fourrier Transform InfraRed Spectroscopy techniques (FTIR). E/Z isomerism of the guanidines was studied and confirmed by NMR analysis in solution (1H-13C Heteronuclear Single Quantum Coherence (HSQC) and Heteronuclear Multiple-Bond Correlation (HMBC), 1H-15N HMBC, 1H- 1H Correlation Spectroscopy (COSY) and Nuclear Overhauser Effect Spectroscopy (NOESY) experiments) at low temperatures. Compounds with p-Cl and p-Br aniline moiety exist mainly as Z isomer with a small proportion of E isomer, whereas compounds with p-NO2 moiety showed a decrease in proportion of isomer Z. The results are important for the application of these molecules as enzymatic inhibitors. Copyright © 2013 John Wiley & Sons, Ltd.
Resumo:
Solid-state Ln-L compounds, where Ln stands for heavy trivalent lanthanides or yttrium(III) (Tb-Lu, Y) and L is succinate, have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), infrared spectroscopy, TG-DTA coupled to FTIR, elemental analysis, X-ray powder diffractometry and complexometry were used to characterize and study the thermal behavior of these compounds. For the terbium to thulium and yttrium compounds, the dehydration, as well the thermal decomposition of the anhydrous compound occurs in two consecutive steps, while ytterbium and lutetium the dehydration occurs in a single step. The results also led to information about the ligand's denticity, thermal stability and thermal decomposition of these compounds. © 2013 Elsevier B.V.
Resumo:
Synthesis, characterization and thermal decomposition of bivalent transition metal α-hydroxyisobutyrates, M(C4H7O 3)2·nH2O (M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II)), as well as the thermal behaviour of α-hydroxyisobutyric acid and its sodium salt were investigated employing simultaneous thermogravimetry and differential scanning calorimetry (TG-DSC), infrared spectroscopy (FTIR), TG-DSC coupled to FTIR, elemental analysis and complexometry. All the compounds were obtained as dihydrated, except the copper one which was obtained in the anhydrous state. The thermal decomposition of the anhydrous compounds occurs in a single or two steps and the final residue up to 235 C (Mn), 300 C (Fe), 305 C (Co), 490 C (Ni), 260 C (Cu) and 430 C (Zn) is Mn2O3, Fe2O3, Co3O 4, NiO, CuO and ZnO, respectively. The results also provided information concerning the ligand's denticity and identification of the gaseous products evolved during the thermal decomposition of these compounds. Copyright © 2013 Published by Elsevier B.V. All rights reserved.
Resumo:
Solid-state M-L compounds, where M stands for bivalent Mn, Co, Ni, Cu and Zn and L is folate (C19H17N7O6), have been synthesized. Simultaneous thermogravimetry and differential scanning calorimetry (TG-DSC), X-ray powder diffractometry, infrared spectroscopy (FTIR), TG-DSC coupled to FTIR, elemental analysis and high-resolution continuum source flame atomic absorption spectrometry technique (HR-CS FAAS) were used to characterize and to study the thermal behaviour of these compounds. The results provided information concerning the composition, dehydration, thermal stability and thermal decomposition. © 2013 Akadémiai Kiadó, Budapest, Hungary.
Resumo:
This work describes the mutagenic response of Sudan III, an adulterant food dye, using Salmonella typhimurium assay and the generation of hazardous aromatic amines after different oxidation methods of this azo dye. For that, we used metabolic activation by S9, catalytic oxidation by ironporphyrin and electrochemistry oxidation in order to simulate endogenous oxidation conditions. The oxidation reactions promoted discoloration from 65% to 95% of Sudan III at 1×10-4molL-1 and generation of 7.6×10-7molL-1 to 0.31×10-4molL-1 of aniline, o-anisidine, 2-methoxi-5-methylaniline, 4-aminobiphenyl, 4,4'-oxydianiline; 4,4'-diaminodiphenylmethane and 2,6-dimethylaniline. The results were confirmed by LC-MS-MS experiments. We also correlate the mutagenic effects of Sudan III using S. typhimurium with the strain TA1535 in the presence of exogenous metabolic activation (S9) with the metabolization products of this compound. Our findings clearly indicate that aromatic amines are formed due to oxidative reactions that can be promoted by hepatic cells, after the ingestion of Sudan III. Considering that, the use of azo compounds as food dyestuffs should be carefully controlled. © 2013 Elsevier Ltd.
Resumo:
Physico-chemical characteristics, fatty acid and tocopherol compositions, total phenolic content and antioxidant activity of crude oil extracted from guava (Psidium guajava var. pomifera) seeds were investigated. Oil yield from the seeds was 14.0%. Data obtained for the analytical indexes compared well with those of others edible oils. The oil showed high levels of unsaturated fatty acids (88.1%), mainly linoleic acid (78.4%). The tocopherol and total phenolic contents in the oil amounted to 29.2 and 92.3 mg/100 g, respectively. The guava seed oil exhibited a great DPPH · scavenging activity showing EC50 of 12.9 g oil/g [DPPH · ] -1 and antiradical efficiency of 7.9×10 -2 . Therefore, the potential utilization of the guava seed oil as a raw material of food, chemical and pharmaceutical industries appears to be favourable and provides the use of a renewable resource, adding value to agricultural products.
Resumo:
Sofrito is a key component of the Mediterranean diet, a diet that is strongly associated with a reduced risk of cardiovascular events. In this study, different Mediterranean sofritos were analysed for their content of polyphenols and carotenoids after a suitable work-up extraction procedure using liquid chromatography/electrospray ionisation-linear ion trap quadrupole-Orbitrap-mass spectrometry (LC/ESI-LTQ-Orbitrap- MS) and liquid chromatography/electrospray ionisation tandem triple quadrupole mass spectrometry (LC/ESI-MS-MS). In this way, 40 polyphenols (simple phenolic and hydroxycinnamoylquinic acids, and flavone, flavonol and dihydrochalcone derivatives) were identified with very good mass accuracy (<2 mDa), and confirmed by accurate mass measurements in MS and MS2 modes. The high-resolution MS analyses revealed the presence of polyphenols never previously reported in Mediterranean sofrito. The quantification levels of phenolic and carotenoid compounds led to the distinction of features among different Mediterranean sofritos according to the type of vegetables (garlic and onions) or olive oil added for their production. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
The effects of the moisture content of the raw material, extrusion temperature and screw speed on flavor retention, sensory acceptability and structure of corn grits extrudates flavored with isovaleraldehyde, ethyl butyrate and butyric acid were investigated. Higher temperature resulted in more expanded extrudates with lower density and cutting force, while higher moisture content increased ethyl butyrate retention. The most acceptable extrudates were those obtained with low moisture content, under conditions of high extrusion temperature and high screw speed, or low screw speed and low extrusion temperature, whereas the aroma intensity closest to the ideal was observed under conditions of low extrusion temperature and low moisture content of the raw material. © 2013 Elsevier Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)