357 resultados para sodium bicarbonate
Resumo:
Recent studies have shown the existence of two important inhibitory mechanisms for the control of NaCl and water intake: one mechanism involves serotonin in the lateral parabrachial nucleus (LPBN) and the other depends on alpha(2)-adrenergic/imidazoline receptors probably in the forebrain areas. In the present study we investigated if alpha(2)-adrenergic/imidazoline and serotonergic inhibitory mechanisms interact to control NaCl and water intake. Male Holtzman rats with cannulas implanted simultaneously into the lateral ventricle (LV) and bilaterally into the LPBN were used. The ingestion of 0.3 M NaCl and water was induced by treatment with the diuretic furosemide (10 mg/kg of body weight)+the angiotensin converting enzyme inhibitor captopril (5 mg/kg) injected subcutaneously 1 h before the access of rats to water and 0.3 M NaCl. Intracerebroventricular (i.c.v.) injection of the alpha(1)-adrenergic/imidazoline agonist clonidine (20 nmol/l RI) almost abolished water (1.6 +/- 1.2, vs. vehicle: 7.5 +/- 2.2 ml/2 h) and 0.3 M NaCl intake (0.5 +/- 0.3, vs. vehicle: 2.2 0.8 ml/2 h). Similar effects were produced by bilateral injections of the 5HT(2a/2b) serotonergic agonist 2,5-dimetoxy-4-iodoamphetamine (DOI, 5 mug/0.2 mul each site) into the LPBN on water (3.6 +/- 0.9 ml/2 h) and 0.3 M NaCl intake (0.4 +/- 0.2 m1/2 h). Injection of the (alpha(2)-adrenergic/imidazoline antagonist idazoxan (320 nmol) i.c.v. completely blocked the effects of clonidine on water (8.4 +/- 1.5 ml/2 h) and NaCl intake (4.0 +/- 1.2 ml/2 h), but did not change the effects of LPBN injections of DOI on water (4.2 +/- 1.0 ml/2 h) and NaCl intake (0.7 +/- 0.2 ml/2 h). Bilateral injections of methysergide (4 mug/0.2 mul each site) into the LPBN increased 0.3 M NaCl intake (6.4 +/- 1.9 ml/2 h), not water intake. The inhibitory effect of i.c.v. clonidine on water and 0.3 M NaCl was still present after injections of methysergide into the LPBN (1.5 +/- 0.8 and 1.7 +/- 1.4 ml/2 h, respectively). The results show that the inhibitory effects of the activation of a,-adrenergic/imidazoline receptors in the forebrain are still present after blockade of the LPBN serotonergic mechanisms and vice versa for the activation of serotonergic mechanisms of the LPBN. Therefore, each system may act independently to inhibit NaCl and water intake. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
The effect of uroguanylin (UGN) oil K(+) and H(+) secretion in the renal tubules of the rat kidney was studied using in vivo stationary microperfusion. For the study of K(+) secretion, a tubule was Punctured to inject a column of FDC-green-colored Ringer's solution with 0.5 mmol KCI/L 10(-6)(mol UGN/L, and oil was Used to block fluid flow. K(+) activity and transepithelial potential differences (PD) were measured with double microelectrodes (K(+) ion-selective resin vs. reference) in the distal tubules of the same nephron. During perfusion, K(+) activity rose exponentially, from 0.5 mmol/L to stationary concentration, allowing for the calculation of K(+) secretion J(K)). JK increased from 0.63 +/- 0.06 nmol.cm(-2).s(-1) in the control croup to 0.85 +/- 0.06 in the UGN group (p < 0.01). PD was -51.0 +/- 5.3 mV in the control group and -50.3 +/- 4.98 mV in the UGN group. In the presence of 10(-7) mol iberiotoxin/L, the UGN effect was abolished: JK was 0.37 +/- 0.038 nmol-cm(-2).s(-1) in the absence of, and 0.38 +/- 0.025 in the presence of, UGN. indicating its action oil rnaxi-K channels. In another series of experiments, renal tubule acidification was studied, using similar method: proximal and distal tubules were perfused with solutions containing 25 mmol NaHCO(3)/L. Acidification half-time was increased both in proximal and distal segments and, as a consequence, bicarbonate reabsorption decreased in the presence of UGN (in proximal tubules, from 2.40 +/- 0.26 to 1.56 +/- 0.21 nmol-cm(-2).s(-1)). When the Na(+)/H(+) exchanger was inhibited by 10(-4) mol hexamethylene amiloride (HMA)/L, the control and UGN groups were not significantly different. In the late distal tubule, after HMA, UGN significantly reduced J(HCO3)(-). indicating all effect of UGN oil H(+)-ATPase. These data show that UGN stimulated J(K)(+) by actin, oil maxi-K channels. and decreased J(HCO3)(-) by acting on NHE3 in proximal and H(+)-ATPase in distal tubules.
Resumo:
The alpha(2)-adrenergic agonist clonidine and the neuropeptide oxytocin, inhibit sodium intake when injected intracerebroventricularly (i.c.v.). The present work investigates whether (1) vasopressin also inhibits sodium intake when injected i.c.v., and (2) the effect of oxytocin and of vasopressin on sodium intake is affected by i.c.v. injection of idazoxan, an alpha(2)-adrenergic antagonist. Clonidine (30 nmol), oxytocin (40, 80 nmol) and vasopressin (40, 80 nmol) were injected i.c.v. 20 min prior to a 1.5% NaCl appetite test, in rats depleted of sodium for 24 h by a combination of a single s.c. injection of furosemide (10 mg/rat) and removal of ambient sodium. Every dose of clonidine, oxytocin and vasopressin inhibited the 1.5% NaCl intake. Seizures were observed with the higher dose of vasopressin, but not with either dose of oxytocin. The effect of i.c.v. injection of clonidine (30 nmol), oxytocin (80 nmol) or vasopressin (40 nmol) was partially inhibited by prior i.c.v. injection of idazoxan (160, 320 nmol). The results suggest that the inhibition of 1.5% NaCl intake induced by i.c.v. injection of neuropeptides in sodium-depleted rats depends, in part, on the activation of central alpha(2)-adrenoceptors. (C) 1997 Elsevier B.V. B.V. All rights reserved.
Resumo:
Central cholinergic mechanisms are suggested to participate in osmoreceptor-induced water intake. Therefore, central injections of the cholinergic agonist carbachol usually produce water intake (i.e., thirst) and are ineffective in inducing the intake of hypertonic saline solutions (i.e., the operational definition of sodium appetite). Recent studies have indicated that bilateral injections of the serotonin receptor antagonist methysergide into the lateral parabrachial nucleus (LPBN) markedly increases salt intake in models involving the activation of the renin-angiotensin system or mineralocorticoid hormones. The present studies investigated whether sodium appetite could be induced by central cholinergic activation with carbachol (an experimental condition where only water is typically ingested) after the blockade of LPBN serotonergic mechanisms with methysergide treatment in rats. When administered intracerebroventricularly in combination with injections of vehicle into both LPBN, carbachol (4 nmol) caused water drinking but insignificant intake of hypertonic saline. In contrast, after bilateral LPBN injections of methysergide (4 mug), intracerebroventricular carbachol induced the intake of 0.3 M NaCl. Water intake stimulated by intracerebroventricular carbachol was not changed by LPBN methysergide injections. The results indicate that central cholinergic activation can induce marked intake of hypertonic NaCl if the inhibitory serotonergic mechanisms of the LPBN are attenuated.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We determined the effects of DuP753 and PD123319 (both nonpeptides and selective antagonists of the AT(1) and AT(2) angiotensin receptors, respectively), and [Sar(1), Ala(8)]ANG II (a non-selective peptide antagonist of angiotensin receptors) on water and 3%NaCl intake induced by administration of angiotensin II (ANG II) into the paraventricular nucleus (PVN) of sodium-depleted Holtzman rats weighing 250-300 g. Twenty hours before the experiments, the rats were depleted of sodium using furosemide (10 ng/rat, sc). The volume of drug solution injected was 0.5 mu l over a period of 10-15 sec. Water and sodium intake were measured at 0.25, 0.5, 1.0 and 2.0 h. Pre-treatment with DuP753 (14 rats) at a dose of 60 ng completely abolished the water intake induced by injection of 12 ng of ANG II (15 rats) (6.4 +/- 0.6 vs 1.4 +/- 0.3 ml/2 h), where [Sar(1), Ala(8)]ANG II (12 rats) and PD123319 (10 rats) at the doses of 60 ng partially blocked water intake (6.4 +/- 0.6 vs 2.9 +/- 0.5 and 2.7 +/- 0.2 ml/2 h, respectively). In the same animals, [Sar(1), Ala(8)]ANG II, DuP753, and PD123319 blocked the sodium intake induced by ANG II (9.2 +/- 1.6 vs 3.3 +/- 0.6, 1.8 +/- 0.3, and 1.4 +/- 0.2 ml/2 h, respectively). These results indicate that both DuP753 and PD123319, administered into the PVN, blocked the water and sodium intake induced by administration of ANG II into the same site.
Resumo:
Water, compared with plasma at a pH of 7.4, is a weak acid. The addition of free water to a patient should have an acidifying effect (dilutional acidosis) and the removal of it, an alkalinizing effect (concentrational alkalosis). The specific effects of free water loss or gain in a relatively complex fluid such as plasma has, to the authors' knowledge, not been reported. This information would be useful in the interpretation of the effect of changes in free water in patients. Plasma samples from goats were either evaporated in a tonometer to 80% of baseline volume or hydrated by the addition of distilled water to 120% of baseline volume. The pH and partial pressure of carbon dioxide, sodium, potassium, ionized calcium, chloride, lactate, phosphorous, albumin, and total protein concentrations were measured. Actual base excess (ABE), standard bicarbonate, anion gap, strong ion difference, strong ion gap, unmeasured anions, and the effects of sodium, chloride, phosphate, and albumin changes on ABE were calculated. Most parameters changed 20% in proportion to the magnitude of dehydration or hydration. Bicarbonate concentration, however, increased only 11% in the evaporation trial and decreased only -2% in the dehydration trial. The evaporation trial was associated with a mild, but significant, metabolic alkalotic effect (ABE increased 3.2 mM/L), whereas the hydration trial was associated with a slight, insignificant metabolic acidotic effect (ABE decreased only 0.6 mM/L). The calculated free water ABE effect (change in sodium concentration) was offset by opposite changes in calculated chloride, lactate, phosphate, and albumin ABE effects.
Resumo:
Products from the spontaneous reaction of a long-chain arenediazonium salt, 2,6-dimethyl-4-hexadecylbenzenediazonium tetrafluoroborate(16-ArN2BF4), in aqueous micellar solutions of sodium dodecyl sulfate (SDS)? are used to estimate the local concentration of chloride and bromide ions at the micellar surface. The arenediazonium ion, 16-ArN2+, which is totally bound to the SDS micelle, reacts by rate-determining loss of N-2 to give an aryl cation that traps available nucleophiles, i,e., H2O, Cl-, and Br-, to give stable phenol, 16-ArOH, and halobenzene products, 16-ArCl and 16-ArBr, respectively. Product yields, determined by HPLC, are related to local concentrations using calibration curves obtained from independent standards. The local concentrations determined by this method are consistent with co-ion concentrations calculated, using a cell model, by numerical integration of the Poisson-Boltzmann equation (PBE) taking into account salt-induced micellar growth. The salt dependence of the intel facial concentrations of Cl- and Br- are identical. indicating no specific interactions in the interfacial co-ion compartment. PBE calculations predict that, in micellar SDS, increasing the concentration of a particular halide salt (NaX) at constant concentration of another halide (NaY) should result in an increase in the local concentrations of both co-ions. Using this chemical-trapping method, this prediction was demonstrated experimentally.
Resumo:
In this study we investigated the influence of a ventromedial hypothalamus (VMH) lesion with ibotenic acid on water and sodium intake and presser responses induced by combined treatment of the median preoptic nucleus (MnPO) with angiotensin Il (ANG II) and adrenergic agonists (phenylephrine, norepinephrine, isoproterenol and clonidine). Male Holtzman rats with a stainless steel cannula implanted into the MnPO and bilateral sham (vehicle) or VMH lesions with ibotenic acid were used. The ingestion of water and sodium and mean arterial pressure (MAP) were determined in separate groups submitted to sodium depletion with the diuretic furosemide (20 mg/rat). ANG II (10 pmol) injection into the MnPO of sham-lesioned rats induced water and sodium intake and presser responses. VMH-lesion reduced ANG II-induced water intake and increased saline intake, In sham rats phenylephrine (80 nmol) into MnPO increased, whereas norepinephrine (80 nmol) and clonidine (40 nmol) reduced ANG II-induced water intake while sodium intake was reduced only by clonidine into MnPO. In VMH-lesioned rats, phenylephrine reduced, noradrenaline increased and clonidine produced no effect on ANG II-induced water intake. In lesioned rats ANG II-induced sodium intake was reduced by phenylephrine and noradrenaline, whereas clonidine produced no change. ANG II-induced presser response was reduced in VMH-lesioned rats, but the presser response combining ANG II and phenylephrine or noradrenaline in VMH-lesioned rats was bigger than sham rats. These results show that the VMH is important for the changes in water and sodium intake and cardiovascular responses induced by angiotensinergic and adrenergic activation of the MnPO. (C) 1997 Elsevier B.V. B.V.
Resumo:
The dielectric permittivity of Na0.80K0.20NbO3 ceramic was investigated by impedance spectroscopy. The dielectric characterization was performed from room temperature to 800 degreesC, in the frequency range 5 Hz-13 MHz. The bulk permittivity was derived by the variation of the imaginary part of the impedance as a function of reciprocal angular frequency. The permittivity values as a function of temperature showed two maxima. The first maximum is very similar at 200degreesC and the second one positioned at around 400degreesC, which was associated to Curie's temperature. The evolution of the complex permittivity as a function of frequency and temperature was investigated. At low frequency dispersion was investigated in terms of dielectric loss. The Na0.80K0.20NbO3 showed a dissipation factor between 5 and 40 over a frequency range from 1 to 10(2) kHz. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Dynamic light scattering, surface tension, and clouding temperature have been monitored to elucidate the solution properties of mixed micelles formed between the anionic surfactant sodium dodecyl sulfate (SDS) and the nonionic surfactant pentaethylene glycol mono-n-dodecyl ether (C12E5) over a wide range of surfactant concentration and temperature. Addition of 0.1 M NaCl shifts the relaxational modes to higher frequency and lowers the clouding temperature (T-c) of the nonionic surfactant solution by about 1 degrees C compared to the salt-free system. T-c for the mixed surfactant solutions is higher than that of the binary C12E5 solutions and depends sensitively on the concentration of the two surfactants but increases only slightly when the total surfactant concentration is increased at a given molar C12E5/SDS concentration ratio. With C12E5/SDS = 5.7, for example, T-c is 46.0 and 47.5 degrees C, respectively, at 5 and 70 mM of C12E5 the mixed solutions are homogeneous and stable and contain nonspherical micelles, which are close to monodisperse over a range of surfactant concentrations and temperature. The mixed system has a lower Krafft point than binary SDS solutions and shows an approximately ideal behavior in contrast to the binary C12E5 solution. The hydrodynamic radius (RH) of the mixed micelle increases with temperature as do C12E5 micelles in the binary solutions and also with increasing C12E5/SDS ratio. At 25 degrees C, the critical micelle concentration of the mixed solution lies between those of the individual surfactants and decreases as the C12E5/SDS ratio is increased.