218 resultados para phospholipase A


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the biological activity profile of the snake venom components is fundamental for improving the treatment of snakebite envenomings and may also contribute for the development of new potential therapeutic agents. In this work, we tested the effects of BthTX-I, a Lys49 PLA2 homologue from the Bothrops jararacussu snake venom. While this toxin induces conspicuous myonecrosis by a catalytically independent mechanism, a series of in vitro studies support the hypothesis that BthTX-I might also exert a neuromuscular blocking activity due to its ability to alter the integrity of muscle cell membranes. To gain insight into the mechanisms of this inhibitory neuromuscular effect, for the first time, the influence of BthTX-I on nerve-evoked ACh release was directly quantified by radiochemical and real-time video-microscopy methods. Our results show that the neuromuscular blockade produced by in vitro exposure to BthTX-I (1 μM) results from the summation of both pre- and postsynaptic effects. Modifications affecting the presynaptic apparatus were revealed by the significant reduction of nerve-evoked [3H]-ACh release; real-time measurements of transmitter exocytosis using the FM4-64 fluorescent dye fully supported radiochemical data. The postsynaptic effect of BthTX-I was characterized by typical histological alterations in the architecture of skeletal muscle fibers, increase in the outflow of the intracellular lactate dehydrogenase enzyme and progressive depolarization of the muscle resting membrane potential. In conclusion, these findings suggest that the neuromuscular blockade produced by BthTX-I results from transient depolarization of skeletal muscle fibers, consequent to its general membrane-destabilizing effect, and subsequent decrease of evoked ACh release from motor nerve terminals. © 2012 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Snake venom metalloproteinases (SVMPs) participate in a number of important biological, physiological and pathophysiological processes and are primarily responsible for the local tissue damage characteristic of viperid snake envenomations. The use of medicinal plant extracts as antidotes against animal venoms is an old practice, especially against snake envenomations. Such plants are sources of many pharmacologically active compounds and have been shown to antagonize the effects of some venoms and toxins. The present study explores the activity of triacontyl p-coumarate (PCT), an active compound isolated from root bark of Bombacopsis glabra vegetal extract (Bg), against harmful effects of Bothropoides pauloensis snake venom and isolated toxins (SVMPs or phospholipase A2). Before inhibition assays, Bg or PCT was incubated with venom or toxins at ratios of 1:1 and 1:5 (w/w; venom or isolated toxins/PCT) for 30 min at 37 °C. Treatment conditions were also assayed to simulate snakebite with PCT inoculated at either the same venom or toxin site. PCT neutralized fibrinogenolytic activity and plasmatic fibrinogen depletion induced by B. pauloensis venom or isolated toxin. PCT also efficiently inhibited the hemorrhagic (3MDH-minimum hemorrhagic dose injected i.d into mice) and myotoxic activities induced by Jararhagin, a metalloproteinase from B. jararaca at 1:5 ratio (toxin: inhibitor, w/w) when it was previously incubated with PCT and injected into mice or when PCT was administered after toxin injection. Docking simulations using data on a metalloproteinase (Neuwiedase) structure suggest that the binding between the protein and the inhibitor occurs mainly in the active site region causing blockade of the enzymatic reaction by displacement of catalytic water. Steric hindrance may also play a role in the mechanism since the PCT hydrophobic tail was found to interact with the loop associated with substrate anchorage. Thus, PCT may provide a alternative to complement ophidian envenomation treatments. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mortality caused by snakebites is more damaging than many tropical diseases, such as dengue haemorrhagic fever, cholera, leishmaniasis, schistosomiasis and Chagas disease. For this reason, snakebite envenoming adversely affects health services of tropical and subtropical countries and is recognized as a neglected disease by the World Health Organization. One of the main components of snake venoms is the Lys49-phospholipases A2, which is catalytically inactive but possesses other toxic and pharmacological activities. Preliminary studies with MjTX-I from Bothrops moojeni snake venom revealed intriguing new structural and functional characteristics compared to other bothropic Lys49-PLA2s. We present in this article a comprehensive study with MjTX-I using several techniques, including crystallography, small angle X-ray scattering, analytical size-exclusion chromatography, dynamic light scattering, myographic studies, bioinformatics and molecular phylogenetic analyses.Based in all these experiments we demonstrated that MjTX-I is probably a unique Lys49-PLA2, which may adopt different oligomeric forms depending on the physical-chemical environment. Furthermore, we showed that its myotoxic activity is dramatically low compared to other Lys49-PLA2s, probably due to the novel oligomeric conformations and important mutations in the C-terminal region of the protein. The phylogenetic analysis also showed that this toxin is clearly distinct from other bothropic Lys49-PLA2s, in conformity with the peculiar oligomeric characteristics of MjTX-I and possible emergence of new functionalities inresponse to environmental changes and adaptation to new preys. © 2013 Salvador et al.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Even though community-acquired methicillin resistant Staphylococcus aureus (CA-MRSA) was described a decade ago, reports from Brazil are scarce and cases occurred in large urban centers. We report MRSA sepsis in a 16-year-old male from a small town and who had no history of exposure to healthcare or recent travel. After trauma during a soccer match, he presented swelling in the right thigh, which evolved in a month to cellulitis complicated by local abscess, orchitis and pneumonia. The patient presented severe sepsis, with fever and respiratory failure. Laboratory findings included blood leukocyte counts above 40,000/mm3 and thrombocytopenia. He was submitted to mechanical ventilation and therapy with vancomycin and imipenem. He had a slow but favorable response to therapy and was discharged after six weeks of hospitalization. MRSA grew from blood cultures and respiratory aspirates obtained before antimicrobial therapy. The isolate belonged to sequence type 5, spa type t311, harbored SCCmec type IV and genes for Panton-Valentine leukocidin and Enterotoxin A. The pulsed-field gel electrophoresis pattern was distinct from North American classic CA-MRSA clones. However, the sequence type and the spa type revealed that the clone belong to the same clonal complex isolated in Argentina. This is the first CA-MRSA infection reported in that region, with significant epidemiologic and clinical implications. © 2013 Elsevier Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hymenoptera venoms are constituted by a complex mixture of chemically or pharmacologically bioactive agents, such as phospholipases, hyaluronidases and mastoparans. Venoms can also contain substances that are able to inhibit and/or diminish the genotoxic or mutagenic action of other compounds that are capable of promoting damages in the genetic material. Thus, the present study aimed to assess the effect of the venom of Polybia paulista, a neotropical wasp, by assays with HepG2 cells maintained in culture. The cytotoxic potential of the wasp venom, assessed by the methyl thiazolyl tetrazolium assay (MTT assay), was tested for the concentrations of 10μg/mL, 5μg/mL and 1μg/mL. As these concentrations were not cytotoxic, they were used to evaluate the genotoxic (comet assay) and mutagenic potential (micronucleus test) of the venom. In this study, it was verified that these concentrations induced damages in the DNA of the exposed cells, and it was necessary to test lower concentrations until it was found those that were not considered genotoxic and mutagenic. The concentrations of 1ng/mL, 100pg/mL and 10pg/mL, which did not induce genotoxicity and mutagenicity, were used in four different treatments (post-treatment, pre-treatment, simultaneous treatment with and without incubation), in order to evaluate if these concentrations were able to inhibit or decrease the genotoxic and mutagenic action of methyl methanesulfonate (MMS). None of the concentrations was able to inhibit and/or decrease the MMS activity. The genotoxic and mutagenic activity of the venom of P. paulista could be caused by the action of phospholipase, mastoparan and hyaluronidase, which are able to disrupt the cell membrane and thereby interact with the genetic material of the cells or even facilitate the entrance of other compounds of the venom that can act on the DNA. Another possible explanation for the genotoxicity and mutagenicity of the venom can be the presence of substances able to trigger inflammatory process and, consequently, generate oxygen reactive species that can interact with the DNA of the exposed cells. © 2013 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lys49-phospholipases A2 (Lys49-PLA2s) are proteins found in bothropic snake venoms (Viperidae family) and belong to a class of proteins which presents a phospholipase A2 scaffold but are catalytically inactive. These proteins (also known as PLA2s-like toxins) exert a pronounced local myotoxic effect and are not neutralized by antivenom, being their study relevant in terms of medical and scientific interest. Despite of the several studies reported in the literature for this class of proteins only a partial consensus has been achieved concerning their functional-structural relationships. In this work, we present a comprehensive structural and functional study with the MjTX-II, a dimeric Lys49-PLA2 from Bothrops moojeni venom which includes: (i) high-resolution crystal structure; (ii) dynamic light scattering and bioinformatics studies in order to confirm its biological assembly; (iii) myographic and electrophysiological studies and, (iv) comparative studies with other Lys49-PLA2s. These comparative analyses let us to get important insights into the role of Lys122 amino acid, previously indicated as responsible for Lys49-PLA2s catalytic inactivity and added important elements to establish the correct biological assembly for this class of proteins. Furthermore, we show two unique sequential features of MjTX-II (an amino acid insertion and a mutation) in comparison to all bothropic Lys49-PLA2s that lead to a distinct way of ligand binding at the toxin's hydrophobic channel and also, allowed the presence of an additional ligand molecule in this region. These facts suggest a possible particular mode of binding for long-chain ligands that interacts with MjTX-II hydrophobic channel, a feature that may directly affect the design of structure-based ligands for Lys49-PLA2s. © 2013 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Ciências Biológicas (Biologia Celular e Molecular) - IBRC

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Biologia Geral e Aplicada - IBB

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Ciência Animal - FMVA

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Microbiologia - IBILCE

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)