170 resultados para medicalization of birth


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: To evaluate the growth pattern of low birth weight preterm infants born to hypertensive mothers, the occurrence of growth disorders, and risk factors for inadequate growth at 24 months of corrected age (CA).Methods: Cohort study of preterm low birth weight infants followed until 24 months CA, in a university hospital between January 2009 and December 2010. Inclusion criteria: gestational age < 37 weeks and birth weight of 1,500-2,499g. Exclusion criteria: multiple pregnancies, major congenital anomalies, and loss to follow up in the 2nd year of life. The following were evaluated: weight, length, and BMI. Outcomes: growth failure and risk of overweight at 0, 12, and 24 months CA. Student's t-test, Repeated measures ANOVA (RM-ANOVA), and multiple logistic regression were used.Results: A total of 80 preterm low birth weight infants born to hypertensive mothers and 101 born to normotensive mothers were studied. There was a higher risk of overweight in children of hypertensive mothers at 24 months; however, maternal hypertension was not a risk factor for inadequate growth. Logistic regression showed that being born small for gestational age and inadequate growth in the first 12 months of life were associated with poorer growth at 24 months.Conclusion: Preterm low birth weight born infants to hypertensive mothers have an increased risk of overweight at 24 months CA. Being born small for gestational age and inadequate growth in the 1st year of life are risk factors for growth disorders at 24 months CA. (C) 2014 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Weight records of Brazilian Nelore cattle, from birth to 630 d of age, recorded every 3 mo, were analyzed using random regression models. Independent variables were Legendre polynomials of age at recording. The model of analysis included contemporary groups as fixed effects and age of dam as a linear and quadratic covariable. Mean trends were modeled through a cubic regression on orthogonal polynomials of age. Up to four sets of random regression coefficients were fitted for animals' direct and maternal, additive genetic, and permanent environmental effects. Changes in measurement error variances with age were modeled through a variance function. Orders of polynomial fit from three to six were considered, resulting in up to 77 parameters to be estimated. Models fitting random regressions modeled the pattern of variances in the data adequately, with estimates similar to those from corresponding univariate analysis. Direct heritability estimates decreased after birth and tended to be lowest at ages at which maternal effect estimates tended to be highest. Maternal heritability estimates increased after birth to a peak around 110 to 120 d of age and decreased thereafter. Additive genetic direct correlation estimates between weights at standard ages (birth, weaning, yearling, and final weight) were moderate to high and maternal genetic and environmental correlations were consistently high.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Many adverse pregnancy outcomes (APOs), including spontaneous preterm birth (PTB), are associated with placental dysfunction. Recent clinical and experimental evidences suggest that premature aging of the placenta may be involved in these events. Although placental aging is a well-known concept, the mechanisms of aging during normal pregnancy and premature aging in APOs are still unclear. This review was conducted to assess the knowledge on placental aging related biochemical changes leading to placental dysfunction in PTB and/or preterm premature rupture of membranes (pPROM). We performed a systematic review of studies published over the last 50 years in two electronic databases (Pubmed and Embase) on placental aging and PTB or pPROM. The search yielded 554 citations, 30 relevant studies were selected for full-text review and three were included in the review. Only one study reported oxidative stress-related aging and degenerative changes in human placental membranes and telomere length reduction in fetal cells as part of PTB and/or pPROM mechanisms. Similarly, two animal studies reported findings of decidual senescence and referred to PTB mechanisms. Placental and fetal membrane oxidative damage and telomere reduction are linked to premature aging in PTB and pPROM but the risk factors and biomolecular pathways causing this phenomenon are not established in the literature. However, no biomarkers or clinical indicators of premature aging as a pathology of PTB and pPROM have been reported. We document major knowledge gaps and propose several areas for future research to improve our understanding of premature aging linked to placental dysfunction.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Deficient antioxidant defenses in preterm infants have been implicated in diseases such as bronchopulmonary dysplasia, retinopathy of prematurity, necrotizing enterocolitis, periventricular leukomalacia, and intraventricular hemorrhage. The antioxidant properties of selenium, vitamin A, and vitamin E make these elements important in the nutrition of Very Low-Birth Weight (VLBW) infants. Selenium is a component of glutathione peroxidase, an enzyme that prevents the production of free radicals. The decrease in plasma selenium in VLBW infants in the first month after birth makes evident that preterm infants have low selenium store and require supplementation by parenteral and enteral nutrition. A meta-analysis, with only three trials, showed that selenium supplementation did not affect mortality, and the incidence of neonatal chronic lung disease or retinopathy of prematurity, but was associated with a reduction in lateonset sepsis. Most VLBW infants and extremely Low-Birth Weight Infants (ELBW) are born with low vitamin A stores and need vitamin A supplementation by intramuscular or enteral route. Low plasma retinol concentrations increase the risk of chronic lung disease/bronchopulmonary dysplasia and long-term respiratory disabilities in preterm infants. There is evidence that vitamin A supplementation decreases the mortality or oxygen requirement at one month of age, and oxygen requirement at 36 weeks’ postmenstrual age. Vitamin E blocks natural peroxidation of polyunsaturated fatty acids from lipid layers of cell membranes. VLBW infants have a decrease in plasma concentrations in the first month after birth suggesting the need of vitamin E supplementation. A meta-analysis on vitamin E supplementation concluded that vitamin E did not affect mortality, risk of bronchopulmonary dysplasia, and necrotizing enterocolitis but reduced the risk of intraventricular hemorrhage and increased the risk of sepsis. Serum vitamin E concentrations higher than 3.5 mg/dL are associated with a decrease in the risk of severe retinopathy of prematurity, and blindness, but also with an increase in neonatal sepsis. Caution is recommended with the supplementation of high doses of parenteral vitamin E and supplementation that increases serum levels above 3.5 mg/dL. In conclusion: although it is known that preterm infants are deficient in selenium, vitamin A and E, more studies are required to determine the best way to supplement and the impact of supplementation on neonatal outcome.