218 resultados para Zirconia polymorphs


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Odontologia Restauradora - ICT

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose:The aim of this study was to evaluate deformation, roughness, and mass loss of stainless steel, diamond-like carbon (DLC)-coated and zirconia drills after multiple osteotomies with sterilization procedures.Materials and Methods:Drilling procedures were performed using stainless steel (G1), DLC-coated (G2), and zirconia (G3) drills. All groups were divided in subgroups 1, 2, 3, 4, and 5, corresponded to drills used 0, 10, 20, 30, and 40 times, respectively.Results:No significant differences in mass and roughness were detected among all groups and subgroups. In SEM images, all groups revealed signs of wear while coating delamination was detected in G2. Drills from G1 displayed more irregular surface, whereas cutting edges were more regular in G3.Conclusion:Zirconia drills presented more regular surfaces whereas stainless steel drills revealed more severe signs of wear. Further studies must be performed to evaluate the putative influence of these findings in heat generation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the current review was to investigate the implications of the surface and bulk properties of abutment implants and their degradation in relation to periodontal health. The success of dental implants is no longer a challenge for dentistry. The scientific literature presents several types of implants that are specific for each case. However, in cases of prosthetics components, such as abutments, further research is needed to improve the materials used to avoid bacterial adhesion and enhance contact with epithelial cells. The implanted surfaces of the abutments are composed of chemical elements that may degrade under different temperatures or be damaged by the forces applied onto them. This study showed that the resulting release of such chemical elements could cause inflammation in the periodontal tissue. At the same time, the surface characteristics can be altered, thus favoring biofilm development and further increasing the inflammation. Finally, if not treated, this inflammation can cause the loss of the implant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the influence of zirconia surface treatments on low-temperature degradation (LTD). Disc-shaped specimens were subjected to one of four surface treatments, denoted as C (controlno surface treatment), Si (air abrasion with 30 mu m silica-modified alumina particles), Al (air abrasion with 30 mu m alumina particles), and Gr (grinding with 120 grit diamond discs). Half of the samples were submitted to autoclave treatment for 12 h (127 degrees C, 1.5 bar). Samples were characterized by x-ray diffraction and profilometer analysis and were subjected to biaxial flexural strength test. All of the groups exhibited an increase in the amount of monoclinic phase (m-phase) after LTD. The tm transformation was remarkable for the specimens from the C group, which also exhibited a significant increase in strength. The Gr group also exhibited an increase in strength but lower initial roughness, which probably suppressed LTD on the zirconia surface. The specimens subjected to air abrasion exhibited higher initial amounts of m-phase and a small increase in m-phase after LTD; the strength was not affected in these groups. The effects of LTD were different with each surface treatment applied. Apparently, LTD may be suppressed by smoother surfaces or the presence of an initial amount of m-phase on zirconia surface. (c) 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 101B: 1387-1392, 2013.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To evaluate the effects of two surface treatments, aging, and two resin cements on shear bond strength between dentin and yttrium-stabilized tetragonal zirconia polycrystal ceramic (Y-TZP).Materials and Methods: Eighty human molars were embedded in acrylic resin and sectioned 3 mm below the occlusal plane. These teeth and 80 cylindrical Y-TZP specimens (height, 4 mm; diameter, 3.4 mm) were divided into eight groups (n=10) using the following factors: Y-TZP surface treatment (Vi: low-fusing porcelain [vitrification] + hydrofluoric acid etching + silanization or Si: tribochemical silicatization); cementation strategies (PF: Pan avia or CC: Clearfil); and storage (nonaging or aging). Bonding surfaces of 40 Y-TZP specimens received Vi treatment, and the rest received Si treatment. Half of the ceramic-tooth assemblies were cemented with Panavia, the rest with Clearfil. Shear tests were executed using 0.4-mm-thick wire at 0.5 mm/min. Data were analyzed by three-way analysis of variance and Tukey test (alpha=0.05). Fractures were analyzed.Results: Y-TZP surface treatments did not affect bond strength (p=0.762, Vi = Si), while resin cements (p<0.001, Panavia > Clearfil) and aging (p=0.006, nonaging > aging) showed a significant effect. Most failures were in adhesive at dentin-cement interfaces; no failure occurred between zirconia and cement.Conclusion: When Y-TZP ceramic is bonded to dentin, the weakest interface is that between dentin and resin cement. The resin cement/Y-TZP interface was less susceptible to failures, owing to Y-TZP surface treatments.