170 resultados para Water retention curve


Relevância:

30.00% 30.00%

Publicador:

Resumo:

p-Phenylenediamine (PPD) and resorcinol (RSN) are hair dye precursors of permanent dyeing more used worldwide. The present work describes a simple and economic voltammetric sensor for simultaneous determination of both components in commercial hair dyeing and tap water at low concentrations. PPD and RSN are oxidized at + 0.17 and + 0.61 V vs. Ag/AgCl at glassy carbon electrode coated by composites of multiwall carbon nanotubes with chitosan (MWNTs-CHT/GCE), which anodic currents density normalized are 10% and 70% higher in relation to the unmodified electrode, respectively. The calibration curve for simultaneous determination of PPD and RSN showed linearity between 0.55 and 21.2 mg L-1 with detection limits of 0.79 and 0.58 mg L-1 to PPD and RSN, respectively. The relative standard deviations found for ten determinations were of 0.73 and 2.35% to 2.70 mg L-1, and 0.87 and 1.08% to 15.96 mg L-1 to PPD and RSN, respectively. The voltammetric sensor was applied to determination of PPD and RSN in tap water and commercial hair dyeing samples and the average recovery for these samples was around 97%. The products generated from PPD and RSN reaction such as was p-quinonediimine and bandrowski base were detected by LC-MS/MS and UV-vis spectrophotometry. (C) 2014 Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work was the development and characterization of a biocompatible microemulsion (ME) containing soybean oil (O), phosphatidylcholine/sodium oleate/Eumulgin®HRE40 as the surfactant mixture (S) and water or buffer solution as the aqueous phase (W), for oral delivery of the poorly water-soluble drugs sulfamerazine (SMR) and indomethacin (INM). A wide range of combinations to obtain clear oil-in-water (o/w) ME was observed from pseudo-ternary phase diagrams, which was greater after the incorporation of both drugs, suggesting that they acted as stabilizers. Drug partition studies indicated a lower affinity of the drugs for the oil domain when they were ionized and with increased temperature, explained by the fact that both drugs were introduced inside the oil domain, determined by nuclear magnetic resonance. High concentrations of SMR and INM were able to be incorporated (22.0 and 62.3 mg/mL, respectively). The ME obtained presented an average droplet size of 100 nm and a negative surface charge. A significant increase in the release of SMR was observed with the ME with the highest percentage of O, because of the solubilizing properties of the ME. Also, a small retention effect was observed for INM, which may be explained by the differences in the partitioning properties of the drugs. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:3535-3543, 2015.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method for the identification and quantification of pesticide residues in water, soil, and sediment samples has been developed, validated, and applied for the analysis of real samples. The specificity was determined by the retention time and the confirmation and quantification of analyte ions. Linearity was demonstrated over the concentration range of 20 to 120 µg L(-1), and the correlation coefficients varied between 0.979 and 0.996, depending on the analytes. The recovery rates for all analytes in the studied matrix were between 86% and 112%. The intermediate precision and repeatability were determined at three concentration levels (40, 80, and 120 µg L(-1)), with the relative standard deviation for the intermediate precision between 1% and 5.3% and the repeatability varying between 2% and 13.4% for individual analytes. The limits of detection and quantification for fipronil, fipronil sulfide, fipronil-sulfone, and fipronil-desulfinyl were 6.2, 3.0, 6.6, and 4.0 ng L(-1) and 20.4, 9.0, 21.6, and 13.0 ng L(-1), respectively. The method developed was used in water, soil, and sediment samples containing 2.1 mg L(-1) and 1.2% and 5.3% of carbon, respectively. The recovery of pesticides in the environmental matrices varied from 88.26 to 109.63% for the lowest fortification level (40 and 100 µg kg(-1)), from 91.17 to 110.18% for the intermediate level (80 and 200 µg kg(-1)), and from 89.09 to 109.82% for the highest fortification level (120 and 300 µg kg(-1)). The relative standard deviation for the recovery of pesticides was under 15%.