279 resultados para Sintering.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

PMN ceramic relaxor has been investigated by several researchers and many aspects of this material, like powder morphology, phase decomposition, weight loss during sintering process, densification, between others, still are investigated. PMN powder preparation has been shown more efficient when synthesized by columbite route, however lead addition stage for the PMN powder synthesis remains problematical. Therefore, this work proposes a new association of methodologies, using columbite route and the hydroxide precipitation method. Through use of the powder mixture technique, which permitted to obtain good green and sintered densities, was possible to observe K+ y Li + dopants reduce weight loss in sintering process and change significantly the dielectric properties. Addition of LiNbO3 seeds in conformation stage, which react in a distinct way as a function of the particle size, promotes the formation of differenced grains in the ceramic bulk. Consequently, very different dielectrics properties from conventional PMN ceramic were obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Titanium and its alloys provide high strength-to-weight ratios, good fatigue strength and increased corrosion resistance compared with others materials. Its acceptance in aerospace has been limited by costs considerations such as high cost of raw material, high buy-to-fly ratios and expensive machining operations. Significant cost reductions can be obtained by vacuum sintering and powder metallurgy (P/M) techniques by producing near net shapes and consequently minimizing material waste and machining time. The Ti 35Nb alloy exhibit a low modulus of elasticity. Stemming from the unique combination of high strength, low modulus of elasticity and low density, this alloy is intrinsically more resistant to shock and explosion damages than most other engineering materials. Samples were produced by mixing of initial metallic powders followed by uniaxial and cold isostatic pressing with subsequent densification by sintering between 900 and 1600 °C, in vacuum. Sintering behavior was studied by means of dilatometry. Sintered samples were characterized for phase composition, microstructure and microhardness by X-ray diffraction, scanning electron microscopy and Vickers indentation, respectively. Density was measured by Archimedes method. Copyright © 2004 Society of Automotive Engineers, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Barium titanates doped with Nb5+, and Y3+, were prepared. The starting powders were synthesized from citrate solutions by the Pechini process and partial Pechini process in two steps. Sintering was performed in the range from 1310° up to 1380°C for 2 hours in air atmosphere. The structural study concerning the incorporation of Nb and Y ions in the barium titanate crystal lattice was performed by XRD, XANES and EXAFS techniques. The dielectric properties were analyzed and the relationship between properties and structure of doped barium titanate was established.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The processing of titanium porous coatings using powder metallurgy technique to achieve a porous structure that allows osseointegration with bone tissue was discussed. The porous microstructure exhibited micropores and interconnected macropores with size ranges that allowed bone ingrowth. The macropores in the coatings were originated from the binder evaporation while the micropore was related with the porous titanium powder and the low compaction pressure used. The in vivo evaluation indicated that osseointegration had occurred between the bone and porous material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microstructure and dielectric properties of Nb-Mn or Sb-Mn codoped BaTiO3 compositions were investigated. Starting ceramics powders were prepared by Pechini method. The composites were sintered at 1310°C and 1330°C in an air atmosphere for two hours. The microstructure and compositional investigations were done with SEM equipped with EDS. Two distinguish microstructure regions are observed in Nb/0.05Mn doped BaTiO 3 ceramics sintered at low temperature. The first, large one, with grain sizes from 5-40 μm and the second region with small grain sizes from 1 to 5 μm. Sintering at higher temperature, independent of Mn content, enables to achieve a uniform microstructure with grains less than 6 μm. In Sb/Mn doped ceramics, for both sintering temperatures, bimodal microstructures with fine grained matrix and grains up to 10 μm is formed. The highest value of permittivity at room temperature and the greatest change of permittivity in function of temperature are observed in Nb/0.01Mn doped ceramics compared to the same ones in Sb/Mn doped ceramics. The greatest shift of Curie temperature towards lower temperature has been noticed in Sb/Mn BaTiO3 ceramics compared to others samples. In all investigated samples the dielectric loss after initially large values at low frequency maintains a constant value for f>3 kHz.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The solid solution 0.9PbMg 1/3Nb 2/3O 3-0.1PbTiO 3 is one of the most widely investigated relaxor ceramic, because of its high dielectric constant and low sintering temperatures. PMN-PT powders containing single perovskite phase were prepared by using a Timodified columbite precursor obtained by the polymeric precursor method. Such precursor reacts directly with stoichiometric amount of PbO to obtain pyrochlore-free PMN-PT powders. The structural effects of K additive included in the columbite precursor and 0.9PMN-0.1PT powders were also studied. The phase formation at each processing step was verified by XRD analysis, being these results used for the structural refinement by the Rietveld method. It was verified the addition of K in the columbite precursor promotes a slight increasing in the powder crystallinity. There was not a decrease in the amount of perovskite phase PMN-PT for 1mol% of K, and the particle and grain size were reduced, making this additive a powerful tool for grain size control.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lanthanum-modified bismuth titanate, Bi4 - xLaxTi3O12 (BLT) ceramics, with x ranging from 0 to 0.75 were prepared by the polymeric precursor method. Orthorhombicity of the system is decreased with the increase of lanthanum content in the bismuth titanate (BIT) crystal lattice. No secondary phases were evident after lanthanum addition. Increasing lanthanum content causes a structural distortion in the bismuth titanate lattice. The shape of the grains is strongly influenced by the lanthanum added to the system. © 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Synthesis of SnO2 ceramic powders was made by coprecipitation method and polymeric precursor method (Pechini) to obtain Sn-Co-Nb-Ti-Al varistor systems. The particles of the obtained ceramic powder presented nanometric size and SnO2 was the principal crystalline phase in them according to X-ray diffraction results. To determine the behavior of the synthesized samples in front of the thermal treatments, thermal analysis (DTA/TG) were made. Dilatometric studies on previously pressed samples were carried out. The optimal conditions of sintering of this raw material were determined. Microstructures and electric properties of sintered samples were studied using scanning electron microscopy (SEM) and I-V characteristics curves. The samples presented varistor behavior independent of the synthesis method used, with high nonlinearity values as 32. The presence of Al3+ favored the concentration of oxygen vacancies, and the grain growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our efforts were directed to the preparation of bismuth titanate - Bi 4e;Ti3O12 (BIT) by mechanically assisted synthesis. The mechanical activation was applied to prepare bismuth titanate, Bi4e;Ti3O12, from bismuth oxide, Bi 2O3, and titanium oxide, TiO2 (in an anatase crystal form). Mechanochemical synthesis was performed in a planetary ball mill in air atmosphere. Bismuth titanate ceramics was obtained by sintering at 1000° C The formation of Bi4e;Ti3O12 in the sintered samples was confirmed by X-ray diffraction analysis. Scanning electron microscopy, SEM, was used to study the particle size and powder morphology. The obtained results indicate that Bi4e;Ti3O12 from the powder synthesized by high-energy ball milling exhibits good sinterability, showing advantage of the mechanochemical process over conventional solid-state reaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reuse of materials has as its main objective to minimize environmental impacts and to rationalize the use of energy chains. In the present work, samples of scraps of 316 stainless steel mixed with powder of the same material were sintered. For this case, the percentage of scrap was varied from zero to 25% in weight, with 5% increases. After compacting, under a pressure of 600MPa, the samples were sintered simultaneously at a temperature of 1473 K. The mechanical behavior of the final product was evaluated through Assays of Transversal Rupture recommended and normalized by the MPIF - Metal Powder Industries Federation. Using Conventional Quantitative Metallography, the analyses of the sintered samples demonstrated regions of intense diffusion, therefore, regions of sufficiently intense sintering. The mechanical resistance of the samples was compared with the mechanical resistance of the sintered stainless steel with no scrap. The results were greater than expected, demonstrating the viability of this new procedure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The α-SiAlON ceramic cutting tool insert is developed. Silicon nitride and additives powders are pressed and sintered in the form of cutting tool inserts at temperature of 1900 °C. The physics and mechanical properties of the inserts like green density, weight loss, relative density, hardness and fracture toughness are evaluated. Machining studies are conducted on grey cast iron workpiece to evaluate the performance of α-SiAlON ceramic cutting tool. In the paper the cutting tool used in higher speed showed an improvement in the tribological interaction between the cutting tools and the grey cast iron workpiece resulted in a significant reduction of flank wear and roughness, because of better accommodation and the presence of the graphite in gray cast iron. The above results are discussed in terms of their affect at machining parameters on gray cast iron.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During gray cast iron cutting, the great rate of mechanical energy from cutting forces is converted into heat. Considerable heat is generated, principally in three areas: the shear zone, rake face and at the clearance side of the cutting edge. Excessive heat will cause undesirable high temperature in the tool which leads to softening of the tool and its accelerated wear and breakage. Nowadays the advanced ceramics are widely used in cutting tools. In this paper a composition special of Si3N4 was sintering, characterized, cut and ground to make SNGN120408 and applyed in machining gray cast iron with hardness equal 205 HB in dry cutting conditions by using digital controlled computer lathe. The tool performance was analysed in function of cutting forces, flank wear, temperature and roughness. Therefore metal removing process is carried out for three different cutting speeds (300 m/min, 600 m/min, and 800 m/min), while a cutting depth of 1 mm and a feed rate of 0.33 mm/rev are kept constant. As a result of the experiments, the lowest main cutting force, which depends on cutting speed, is obtained as 264 N at 600 m/min while the highest main cutting force is recorded as 294 N at 300 m/min.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Barium zirconate titanate Ba(Ti0.90Zr0.10)O3 ceramics doped with WO3 (BZT:2W) have been prepared by a traditional solid phase reaction. The effect of temperature on the structural and electrical properties was investigated. X ray diffraction data evidenced formation of secondary phases for the samples sintered at 1300oC end 1350oC while the pure phase was attained at 1200oC. A modified Curie-Weiss law was used to describe the diffuseness of a phase transition. As temperature increases, the maximum dielectric permittivity decreased. The fine-grained sample showed a 'diffuse-like' ferroelectric behavior. The dielectric permittivity reaches a maximum value (εm ~6420 at 10 kHz) for the ceramics sintered at 1200oC for 4 hours.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bismuth titanate ceramics (Bi 4Ti 3O 12) with 10 wt% in excess of bismuth (BIT10) were prepared by the polymeric precursor method and sinterized in microwave (MW) and conventional furnaces (CF). The effect of microwave energy on structural and electrical behavior of BIT10 ceramics was investigated by means of X-ray diffraction (XRD), Scanning electron microscopy (SEM) and electrical measurements. The results of the BIT10 ceramics processed in the microwave furnace (MW) showed a high structural organization compared to conventional treatment (CF). Size of grains and dieletrical properties are influenced by annealing conditions while coercitive field is not dependent on it. The maximum dielectric permittivity (12000) was obtained for the sample sintered in the microwave furnace. Piezoelectric force microscopy images reveals that in-plane response may not change its sign upon polarization switching, while the out-of-plane response does with the influence of microwave energy. Copyright © 2010 American Scientific Publishers All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For microwave applications, including mobile and satellite communications, ceramic resonators should have a high dielectric constant, low dielectric losses, and high frequency stability. In this sense, TiO2-ZrO 2 ceramics have been investigated as a function of sintering behavior, phase composition, and microstructure. The ceramics were densified reaching a value of about 86% of theoretical density at 1400°C sintering temperature. The ceramics are prepared by mixing raw materials with the following TiO2-ZrO2 weight % ratio: 100 to 0, 90 to 10, and 80 to 20, respectively. The measured dielectric constants are between 79 and 88 values, while the quality factor due to dielectric losses are between 2820 and 5170. These results point out the influence of Ti/Zr ratio on controlling the dielectric properties. © (2010) Trans Tech Publications.