206 resultados para Quantum mechanical model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dijet production at the Tevatron including effects of virtual exchanges of spin-2 Kaluza-Klein modes in theories with large extra dimensions is considered. The experimental dijet mass and angular distribution are exploited to obtain stringent limits (> 1.2TeV) on the effective string scale M s.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Research on Blindsight, Neglect/Extinction and Phantom limb syndromes, as well as electrical measurements of mammalian brain activity, have suggested the dependence of vivid perception on both incoming sensory information at primary sensory cortex and reentrant information from associative cortex. Coherence between incoming and reentrant signals seems to be a necessary condition for (conscious) perception. General reticular activating system and local electrical synchronization are some of the tools used by the brain to establish coarse coherence at the sensory cortex, upon which biochemical processes are coordinated. Besides electrical synchrony and chemical modulation at the synapse, a central mechanism supporting such a coherence is the N-methyl-D-aspartate channel, working as a 'coincidence detector' for an incoming signal causing the depolarization necessary to remove Mg 2+, and reentrant information releasing the glutamate that finally prompts Ca 2+ entry. We propose that a signal transduction pathway activated by Ca 2+ entry into cortical neurons is in charge of triggering a quantum computational process that accelerates inter-neuronal communication, thus solving systemic conflict and supporting the unity of consciousness. © 2001 Elsevier Science Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We derive the equation of state for hot nuclear matter using the Walecka model in a non-perturbative formalism. We include here the vacuum polarization effects arising from the nucleon and scalar mesons through a realignment of the vacuum. A ground state structure with baryon-antibaryon condensates yields the results obtained through the relativistic Hartree approximation of summing baryonic tadpole diagrams. Generalization of such a state to include the quantum effects for the scalar meson fields through the σ -meson condensates amounts to summing over a class of multiloop diagrams. The techniques of the thermofield dynamics method are used for the finite-temperature and finite-density calculations. The in-medium nucleon and sigma meson masses are also calculated in a self-consistent manner. We examine the liquid-gas phase transition at low temperatures (≈ 20 MeV), as well as apply the formalism to high temperatures to examine a possible chiral symmetry restoration phase transition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we study the warm equation of state of asymmetric nuclear matter in the quark-meson coupling model which incorporates explicitly quark degrees of freedom, with quarks coupled to scalar, vector, and isovector mesons. Mechanical and chemical instabilities are discussed as a function of density and isospin asymmetry. The binodal section, essential in the study of the liquid-gas phase transition is also constructed and discussed. The main results for the equation of state are compared with two common parametrizations used in the nonlinear Walecka model and the differences are outlined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nonlinear dynamic response and a nonlinear control method of a particular portal frame foundation for an unbalanced rotating machine with limited power (non-ideal motor) are examined. Numerical simulations are performed for a set of control parameters (depending on the voltage of the motor) related to the static and dynamic characteristics of the motor. The interaction of the structure with the excitation source may lead to the occurrence of interesting phenomena during the forward passage through the several resonance states of the systems. A mathematical model having two degrees of freedom simplifies the non-ideal system. The study of controlling steady-state vibrations of the non-ideal system is based on the saturation phenomenon due to internal resonance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We perform a systematic numerical study, based on the time-dependent Gross-Pitaevskii equation, of jet formation in collapsing and exploding Bose-Einstein condensates as in the experiment by Donley et al (2001 Nature 412 295). In the actual experiment, via a Feshbach resonance, the scattering length of atomic interaction was suddenly changed from positive to negative on a pre-formed condensate. Consequently, the condensate collapsed and ejected atoms via explosion. On disruption of the collapse by suddenly changing the scattering length to zero, a radial jet of atoms was formed in the experiment. We present a satisfactory account of jet formation under the experimental conditions and also make predictions beyond experimental conditions which can be verified in future experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study a model for dynamical localization of topology using ideas from non-commutative geometry and topology in quantum mechanics. We consider a collection X of N one-dimensional manifolds and the corresponding set of boundary conditions (self-adjoint extensions) of the Dirac operator D. The set of boundary conditions encodes the topology and is parameterized by unitary matrices g. A particular geometry is described by a spectral triple x(g) = (A X, script H sign X, D(g)). We define a partition function for the sum over all g. In this model topology fluctuates but the dimension is kept fixed. We use the spectral principle to obtain an action for the set of boundary conditions. Together with invariance principles the procedure fixes the partition function for fluctuating topologies. The model has one free-parameter β and it is equivalent to a one plaquette gauge theory. We argue that topology becomes localized at β = ∞ for any value of N. Moreover, the system undergoes a third-order phase transition at β = 1 for large-N. We give a topological interpretation of the phase transition by looking how it affects the topology. © SISSA/ISAS 2004.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The scattering of charmed mesons on nucleons is investigated within a chiral quark model inspired on the QCD Hamiltonian in Coulomb gauge. The microscopic model incorporates a longitudinal Coulomb confining interaction derived from a self-consistent quasi-particle approximation to the QCD vacuum, and a traverse hyperfine interaction motivated from lattice simulations of QCD in Coulomb gauge. From the microscopic interactions at the quark level, effective meson-baryon interactions are derived using a mapping formalism that leads to quark-Born diagrams. As an application, the total cross-section of heavy-light D-mesons scattering on nucleons is estimated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate, from a philosophical perspective, the relation between abductive reasoning and information in the context of biological systems. Emphasis is given to the organizational role played by abductive reasoning in practical activities of embodied embedded agency that involve meaningful information. From this perspective, meaningful information is provisionally characterized as a selforganizing process of pattern generation that constrains coherent action. We argue that this process can be considered as a part of evolutionarily developed learning abilities of organisms in order to help with their survival. We investigate the case of inorganic mechanical systems (like robots), which deal only with stable forms of habits, rather than with evolving learning abilities. Some difficulties are considered concerning the hypothesis that mechanical systems may operate with meaningful information, present in abductive reasoning. Finally, an example of hypotheses creation in the domain of medical sciences is presented in order to illustrate the complexity of abduction in practical reasoning concerning human activities. © 2007 Springer-Verlag Berlin Heidelberg.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study on several components of intervertebral joints is essential to understand the spine's degenerative mechanisms and to assess the best method for their treatment. For such study it is necessary to know the mechanical properties of the isolated intervertebral disc (ID) mechanical properties and, it is necessary to evaluate its stresses and strains. In order to assess the ID displacements, a fine, U-shaped blade was developed, over which two extensometers connected in a Wheatstone bridge were placed. The device was then tested on porcine spine ID, where compression loads were applied and the extremities displacements of the blade coupled to the intervertebral disc were measured. Stress/strain diagram, both on the compression and on the decompression phases, evidencing the non-linear nature of such relationship. With the experiment, it was possible to obtain approximate values of the longitudinal elasticity module (E) of the disc material and of the Poisson coefficient (n ). After several tests, E results are compatible with those obtained by others studies, with very simple and low-cost device. This experiments can be used for obtained others mechanical properties of isolated ID with precision and accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The short-range diffusion phenomenon (Snoek Effect) was investigated by mechanical spectroscopy measurements between 300 K and 650 K, in a polycrystalline niobium sample, containing oxygen and nitrogen, using a torsion pendulum. Experimental spectra of anelastic relaxation were obtained under three conditions: as-received sample; annealed sample and subsequently annealed in an oxygen atmosphere for three hours at 1170 K in partial pressure of 5°10 -5mbar. The experimental spectra obtained were decomposed in elementary Debye peaks and the anelastic relaxation processes were identified. With anelastic relaxation parameters and the lattice parameters, the interstitial diffusion coefficients of the oxygen and nitrogen in niobium were calculated for each kind of preferential occupation (octahedral and tetrahedral). The results were compared with the literature data, and confirmed that the best adjustment is for the preferential occupation octahedral model for low concentrations of interstitial solutes, but at higher concentration of oxygen were observed deviations of experimental data for the interstitial diffusion coefficients of oxygen in niobium when compared with the literature data, this could be related to the possible occurrence of a double occupation of interstitial sites in the niobium lattice by oxygen interstitials. © (2010) Trans Tech Publications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We discuss the thermal dependence of the zero-bias electrical conductance for a quantum dot embedded in a quantum wire, or side-coupled to it. In the Kondo regime, the temperature-dependent conductances map linearly onto the conductance for the symmetric Anderson Hamiltonian. The mapping fits accurately numerical renormalization-group results for the conductance in each geometry. In the side-coupled geometry, the conductance is markedly affected by a gate potential applied to the wire; in the embedded geometry, it is not. © 2010 IOP Publishing Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper analyzes the non-linear dynamics of a MEMS Gyroscope system, modeled with a proof mass constrained to move in a plane with two resonant modes, which are nominally orthogonal. The two modes are ideally coupled only by the rotation of the gyro about the plane's normal vector. We demonstrated that this model has an unstable behavior. Control problems consist of attempts to stabilize a system to an equilibrium point, a periodic orbit, or more general, about a given reference trajectory. We also developed a particle swarm optimization technique for reducing the oscillatory movement of the nonlinear system to a periodic orbit. © 2010 Springer-Verlag.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Excessive consumption of sugar-sweetened beverage is positively related to overweight. Despite the epidemic of childhood obesity, body mass can have a positive or negative effect on bone health. Material and methods: Wistar rats 8 weeks olds were randomly assigned to consume water (Control group, n = 10), sucrose 30% (HS group, n = 10) and water + sucrose 30% (WHS group, n = 14) for 8 weeks. All animals received standard laboratory chow ad libitum. Femur measurements included microhardness, bone mineral density (BMD) by DXA, mechanical compression test and microcomputed tomography (microCT) analysis. Results: We observed significant difference in final body weight in HS and WHS groups, significant increase in triacylglycerol/fructosamine in HS and WHS groups, significantly high BMD in WHS group, increased periosteal/endosteal cortical microhardness in WHS group. Compared with control, microCT parameters evidenced lower amount of connected trabecular bone, decreased bone volume, lower trabecular number with high trabecular separation in distal epiphysis in WHS animals. Conclusion: High-sucrose consumption causes obesity induced by a liquid diet with negative effects on cancellous bone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A modification of the one-dimensional Fermi accelerator model is considered in this work. The dynamics of a classical particle of mass m, confined to bounce elastically between two rigid walls where one is described by a nonlinear van der Pol type oscillator while the other one is fixed, working as a reinjection mechanism of the particle for a next collision, is carefully made by the use of a two-dimensional nonlinear mapping. Two cases are considered: (i) the situation where the particle has mass negligible as compared to the mass of the moving wall and does not affect the motion of it; and (ii) the case where collisions of the particle do affect the movement of the moving wall. For case (i) the phase space is of mixed type leading us to observe a scaling of the average velocity as a function of the parameter (χ) controlling the nonlinearity of the moving wall. For large χ, a diffusion on the velocity is observed leading to the conclusion that Fermi acceleration is taking place. On the other hand, for case (ii), the motion of the moving wall is affected by collisions with the particle. However, due to the properties of the van der Pol oscillator, the moving wall relaxes again to a limit cycle. Such kind of motion absorbs part of the energy of the particle leading to a suppression of the unlimited energy gain as observed in case (i). The phase space shows a set of attractors of different periods whose basin of attraction has a complicated organization. © 2013 American Physical Society.