251 resultados para Nitrogen fertilization and yield components
Adubação nitrogenada no consórcio de milho com duas espécies de braquiária em sistema plantio direto
Resumo:
O objetivo deste trabalho foi avaliar a produtividade de grãos e de forragem do consórcio entre milho e espécies de braquiária (safras de 2008/2009 e 2009/2010), submetidos a doses de nitrogênio em cobertura, em sistema plantio direto. Utilizou-se o delineamento experimental inteiramente casualizado, com quatro repetições, em arranjo fatorial 2x5, com duas espécies de braquiária (Urochloa brizantha 'Xaraés' e U. ruziziensis) e cinco doses de N aplicadas em cobertura: 0, 50, 100, 150 e 200 kg ha‑1. Foram avaliados: leituras indiretas do teor foliar de clorofila (índice de clorofila Falker, ICF), teores de macronutrientes foliares, componentes da produção e produtividade de grãos do milho, e produtividade de matéria seca das forrageiras após o consórcio. Constatou-se que a espécie U. ruziziensis foi a mais competitiva com o milho em consórcio, o que proporcionou menores teores nutricionais e ICF nas duas safras analisadas. O crescimento vegetativo, os componentes da produção e a produtividade de grãos do milho não foram influenciados pelos consórcios. A adubação nitrogenada em cobertura aumenta linearmente o ICF, os teores de N, P e S, bem como os componentes da produção e a produtividade de grãos.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The objectives of this study were to evaluate morphogenetic characteristics and tillering dynamics in Tanzania grass fertilized and non-fertilized with nitrogen, under intermittent grazing, in the spring and the summer. The main plots were composed of four nitrogen rates (0, 100, 200 and 300 kg/ha) and the subplots were growth seasons: spring (October, November and December) and summer (January, February and March). The experimental design was of randomized block with plots subdivided by time (seasons of the year) and four replications. Urea was used as nitrogen supply and was divided into two applications: one in the spring and another in the summer. The experimental units fertilized with N rates of 200 and 300 kg/ha showed six cycles of pasture, with an average of 27 days of pasture interval, while the treatments with no fertilization and 100 kg/ha of N showed only four and five cycles of pasture, respectively. Leaf elongation rate (LER) and the leaf appearance rate (LAR) increased linearly with increasing of N rates. The greatest population density occurred in summer with the higher nitrogen rates. The treatment without N fertilization showed the lowest growth of tiller population, while the other treatments exhibited growth rates above 50% when compared with non-fertilized samples. Nitrogen rates significantly affect the leaf appearance rate and the leaf elongation rate, as well as the number of live leaves in plants of Tanzania grass in both spring and summer.
Resumo:
Winter cover crops can affect N nutrition of the following maize crop. Although legumes have been recommend for maize rotations, in tropical areas grasses may be more interesting because they provide a longer protection of soil surface. Legumes can add N to the system and grasses can compete with maize for the available nutrient. An experiment was conducted in Botucatu, São Paulo State, Brazil, to study N dynamics in the soil surface straw-maize system as affected by N fertilization management and species included in the no-till rotation. Treatments were fallow, black oat (Avena strigosa), pearl millet (Pennisetum glaucum), white lupins (Lupinus albus), black oat fertilized with N. and pearl millet fertilized with N. Maize was grown afterwards in the same plots, receiving 0.0, 60.0 and 120.0 kg ha(-1) of N sidedressed 30 days after plant emergence. Soil, straw and maize samples were taken periodically. The highest corn yields were observed when it was cropped after pearl millet fertilized with N. Nitrogen side dressed application up to 120 kg ha(-1) was not able to avoid corn yield decrease caused by black oat. Grasses can be recommended in maize rotations in tropical areas, provided they receive nitrogen fertilizer and show no allelopathy. Due to its higher ON ratio and dry matter yield they are better than legumes, protecting the soil surface for a longer period. Pearl millet is particularly interesting because it enhances N use efficiency by the following maize crop. For a better N availability/demand synchronism, the cover crops should be desiccated right before maize planting.
Resumo:
Lady palm, [Rhapis excelsa (Thunberg) Henry ex. Rehder] is one of the most cultivated ornamental palms in the world, for use as a vase plant or in shaded landscapes. Because limited information exists on lady palm response to fertilizers, the objective of this study was to evaluate the effect of different types of fertilization and substrates on lady palm seedling growth and development. Three year old lady palms were planted in 8-L pots, filled with a mix of soil, manure, and sand 1:1:1 (v:v:v), placed under a 50% shade, and irrigated with microspray. Treatments were substrate fertilization with 500 g P(2)O(5) and 100 g K(2)O per m(3); fertilization with 1.8 kg of P(2)O(5) (simple superphosphate) per m3; 50 g of nitrogen (N), P(2)O(5), and K(2)O of a granulated fertilizer (10:10:10) per m(3), control (without fertilization), and a foliar fertilization in addition to these treatments using the commercial product Biofert (8:9:9). Treatments were replicated four times in a randomized block design. Each treatment plot consisted of four plants. Data were collected at 140, 170, 200, 230, 260, and 290 days after transplanting (DAT) for plant heights, stem diameter at substrate level, number of leaves, shoots, and canopy, roots fresh and dry matter samples were harvest at 290 days. Foliar fertilization resulted in significantly greater plant height in a 140, 120, 200, and 230 DAT and plant diameter on the 140, 260, and 290 DAT. There was interaction among factors for number of leaves with fertilization based on P(2)O(5) and K(2)O when leaf fertilizer was added that resulted in a greater number of leaves.
Resumo:
The objective of this work was to evaluate the effect of nitrogen sources and rates on maize nutrition and grain yield under no-tillage system in sandy soil. The experiment was conducted in a Typic Quartzipsamment, in the city of Cassilandia, State of Mato Grosso do Sul, Brazil. A completely randomized block design was used in a factorial array 3x4 with four replicates. Treatments consisted of three sources [urea, extruded urea with starch (Starea), and ammonium sulfonitrate with nitrification inhibitor of 3,4-dimethylpyrazole-phosphate (Entec (R) 26)] and four rates (0, 45, 90 and 180 kg ha(-1)) of nitrogen, applied in side-dressing when the plants presented four and six expanded leaves. The nitrogen source affected N, K, and S concentration in the leaf, but did not interfere in the components of production and maize grain yield. Nitrogen application like ammonium sulfonitrate promoted higher concentrations of N, K and S in the maize leaf in relation to the urea, especially in the larger rates studied. Side-dressing nitrogen fertilization increased the number of ears per plant, number of grains per ear and grain yield, grown under no-tillage system in sandy soil, independent of the used source.
Resumo:
The purpose of this study was to evaluate the best time for application of N for an irrigated corn crop in a no-tillage system in the State of Alagoas. Three corn hybrids were used (TORK, FORT and BRS-3003) with four application times (days after sowing - DAS) for fertilizing with nitrogen as top dressing, consisting of the following treatments: 1) 120 kg ha-1 at 15 DAS, 2) 60 kg ha-1 at 15 DAS and 60 kg ha-1 at 30 DAS, 3) 120 kg ha-1 at 30 DAS, 4) 60 kg ha-1 at 30 DAS and 60 kg ha -1 at 45 DAS and 5) control treatment without N fertilization. The experimental design was in randomized blocks with four replications in a subdivided plot scheme. The components of the production studied were: final population of plants ha-1, numbers of corn ears ha-1 length of corn ears and number of rows of grains of corn and mass of 1000 grains. The productivities of grains obtained did not present significant differences among the treatments that received fertilization with nitrogen, independent of the time of application and number of split applications. It is concluded that in the notillage system in Alagoas spliting the manuring with nitrogen (top dressing) is not necessary.
Resumo:
The present work aimed at evaluating the effects of cattle manure fertilization on the growth and yield of fig trees. The cultivar 'Roxo de Valinhos' was used. One-, two-, three-and four-year-old trees were treated with cattle manure containing 0, 25, 50, 75, 100, 125 and 150% of the recommended nitrogen level per plant. The experiment was carried out using randomized blocks with 7 treatments, 5 replicates and 5 plants per experimental plot. The evaluated characteristics were: plant height, stem diameter, secondary branch length and diameter, yield per plant (kg plant-1), besides some quality characteristics of fruits such as pH, titratable acidity, soluble solids and texture. Manure application enhanced plant growth and fruit production. Significant differences were observed only for soluble solids content, pH and texture, which varied according to the crop cycle. After four crop cycles (2002/03, 2003/04, 2004/05 and 2005/06), the best results (about 5.0 kg of fruits per plant) were obtained with 100% of the recommended nitrogen dose, which corresponded to 14.3 kg of cattle manure per plant, in the last crop cycle (2005/2006).
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Microorganisms can produce lipases with different biochemical characteristics making necessary the screening of new lipase-producing strains for different industrial applications. In this study, 90 microbial strains were screened as potential lipase producers using a sensitive agar plate method with a suitable medium supplemented with Tween 20 and also a liquid culture supplemented with olive oil. The highest cell growth and lipase production for Candida viswanathii were observed in triolein and oleic acid when used as the only pure carbon source. Renewable low-cost triacylglycerols supported the best cell growth, and olive oil was found to be the best inducer for lipase production (19.50 g/L and 58.50 U). The selected conditions for enzyme production were found with yeast extract as nitrogen source and 1.5 % (w/v) olive oil (85.70 U) that resulted in a good cell growth yield (YX/S = 1.234 g/g) and lipase productivity (1.204 U/h) after 72 h of shake-flask cultivation. C. viswanathii lipase presented high hydrolytic activity on esters bonds of triacylglycerols of long-chain, and this strain can be considered an important candidate for future applications in chemical industries. © 2012 Springer-Verlag Berlin Heidelberg and the University of Milan.
Resumo:
After harvest, sugarcane residues left on the soil surface can alter nitrogen (N) dynamics in the plant-soil system. In Oxisols, the nitrogen fertilizer applied had its effects on the levels of ammonium and nitrate in the soil, N concentration in the plant leaves, and on the growth and productivity of second ratoon plants. The N rates tested were of 0, 60, 120, 180, and 240 kg ha-1. Each treatment was replicated four times. Four months after the experiment was started, ammonium and nitrate concentration in the soil, N levels in plant leaves, and plant growth were evaluated. Productivity was evaluated 11 months after the experiment was set. By increasing the content of mineral N in soil, plant growth variables reflected differences in the production of stems; however, it did not affect foliar N. The use of leaf analysis was not important to assess the nutritional status of nitrogen in the ratoon sugarcane. Nitrogen concentration in soil was affected by nitrogen fertilization, but not the N content in leaves. The rate of 138 kg N ha-1enabled greater production of sugarcane stalks (140 t ha-1). © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
Soil acidity and low natural fertility are the main problems for grain production in Brazilian 'cerrado'. Although lime has been the most applied source for soil correction, silicate may be an alternative material due to its lower solubility and Si supply, which is beneficial to several crops. This work aimed to evaluate the efficiency of superficial liming and calcium/magnesium silicate application on soil chemical attributes, plant nutrition, yield components and final yield of a soybean/white oat/maize/bean rotation under no-tillage system in a dry-winter region. The experiment was conducted under no tillage system in a deep acid clayey Rhodic Hapludox, Botucatu-SP, Brazil. The design was the completely randomized block with sixteen replications. Treatments consisted of two sources for soil acidity correction (dolomitic lime: ECC=90%, CaO=36% and MgO=12%; calcium/magnesium silicate: ECC=80%, CaO=34%, MgO=10% and SiO2=22%) applied in October 2006 to raise base saturation up to 70% and a control, with no soil correction. Soybean and white oat were sown in 2006/2007 as the main crop and off-season, respectively. Maize and bean were cropped in the next year (2007/2008). Products from silicate dissociation reach deeper soil layers after 18months from the application, compared to liming. Additionally, silicate is more efficient than lime to increasing phosphorus availability and reducing toxic aluminum. Such benefits in soil chemical attributes were only evidenced during bean cropping, when grain yield was higher after silicate application comparatively to liming. Both correction sources were improved mineral nutrition of all the other crops, mainly Ca and Mg levels and agronomical characteristics, reflecting in higher yield. © 2012 Elsevier B.V.