172 resultados para MV cone beam
Resumo:
The purpose of this study was to analyze the biomechanical interactions in bone tissue between short implants and implant-supported crowns with different heights. Two models were made using the programs InVesalius 3.0, Rhinoceros 4.0 and Solidworks 2010. The models were established from a bone block with the short implant (3.75 x 8.5 mm) with geometry Morse taper connection (MT). The height of the crown (cemented) was set at 10.0 mm and 15.00 mm. The models were processed by programs and 10 NEiNastran Femap 10.0. The force applied was 200N (vertical) and 100N (oblique). The results were plotted on maps Voltage Maximum Principal. Statistical analysis was performed using ANOVA. The results showed that the increase in crown height, increased stress concentration in the crown of 15 mm under oblique loading (p <0.001), the oblique loading has significantly expanded the area of stress concentration (p <0.001). Conclusion:the increase of the crown increased the stress concentration, being statistically significant for short implants Morse taper. The mesial and distal region had the highest concentration of stresses under oblique loading. The oblique loading was more harmful when compared with axial loading, being statistically significant.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The Cone Loading Test (CLT) consists of the execution of a load test on the piezocone probe in conjunction with the CPT test. The CLT yields the modulus ECLT, a parameter that can be used in the estimative of foundation settlement. It is also presented here the interpretation and the process to determine ECLT values from the stress-displacement curves obtained from cone loading tests. Several CLT tests were conducted at the experimental research site of São Paulo State University, Bauru-SP-Brazil. The geotechnical profile at the studied site is a brown to bright red slightly clayey fine sand, a tropical soil common to this region which is lateritic, unsaturated and collapsible. The results of CLT tests satisfactorily represent the behavior of the investigated soil. The penetrometric modulus ECLT for each depth was calculated considering the elastic behavior in the initial linear segment of the soil stress-strain curve. The ECLT moduli obtained for the various tests were compared to moduli obtained from PMT and DMT test results performed at same studied site. The shear modulus degradation curves obtained from the CLT tests are also presented. The comparison to PMT and DMT results indicates the CLT test is a viable complementary test to the CPT in the quest for better understanding stress-strain behavior of soils. Further, the CLT test provides a graphic visualization of the degradation of the shear modulus with increasing levels of strain. As a hybrid geotechnical test, CPT+CLT can be valuable in the investigation of non-conventional collapsible soils, whose literature lack reference parameters for the prediction of settlement in the design of foundations.
Resumo:
The Ball and Beam system is a common didactical experiment in control laboratories that can be used to illustrate many different closed-loop control techniques. The plant itself is subjected to many nonlinear effects, which the most common comes from the relative motion between the ball and the beam. The modeling process normally uses the lagrangean formulation. However, many other nonlinear effects, such as non-viscous friction, beam flexibility, ball slip, actuator elasticity, collisions at the end of the beam, to name a few, are present. Besides that, the system is naturally unstable. In this work, we analyze a subset of these characteristics, in which the ball rolls with slipping and the friction force between the ball and the beam is non-viscous (Coulomb friction). Also, we consider collisions at the ends of the beam, the actuator consists of a (rubber made) belt attached at the free ends of the beam and connected to a DC motor. The model becomes, with those nonlinearities, a differential inclusion system. The elastic coefficients of the belt are experimentally identified, as well as the collision coefficients. The nonlinear behavior of the system is studied and a control strategy is proposed.
Resumo:
This study focuses on analysing the effects of nonlinear torsional stiffness on the dynam-ics of a slender elastic beam under torsional oscillations, which can be subject to helical buckling.The helical buckling of an elastic beam confined in a cylinder is relevant to many applications. Someexamples include oil drilling, medical cateters and even the conformation and functioning of DNAmolecules. A recent study showed that the formation of the helical configuration is a result of onlythe torsional load, confirming that there is a different path to helical buckling which is not related tothe sinusoidal buckling, stressing the importance of the geometrical behaviour of the beam. A lowdimensional model of an elastic beam under torsional oscillations is used to analyse its dynamical be-haviour with different stiffness characteristics, which are present before and after the helical buckling.Hardening and softening characteristics are present, as the effects of torsion and bending are coupled.With the use of numerical algorithms applied to nonlinear dynamics, such as bifurcation diagramsand basins of attraction, it is shown that the nonlinear stiffness can shift the bifurcations and inducechanges in the stability of the desirable and undesirable solutions. Therefore, the proper modellingof these stiffness nonlinearities seems to be important for a better understanding of the dynamicalbehaviour of such beams.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)