208 resultados para ISOLATED RAT MUSCLE
Resumo:
The histamine releasing properties of glucose (mannose)-specific lectins isolated from Brazilian beans was examined. The Canavalia brasiliensis, Dioclea rostrata, and Dioclea virgata lectins induced histamine release in rat peritoneal mast cells similar to concanavalin A. Less potency and efficacy was observed for Canavalia maritima, Dioclea guianensis, and Dioclea violacea while very low activities were seen for the lectins from Dioclea grandiflora, Canavalia bonariensis, and Cratylia floribunda. The histamine releasing effect was quenched by higher doses of D. virgata lectin similar to what was reported for concanavalin A. This effect was abrogated by increasing the concentration of calcium in the incubating medium. As these above proteins have sites that bind calcium, higher doses of the lectins might withdraw the calcium which is essential for the mast cell secretion.
Resumo:
PURPOSE: To evaluate the effects of afterload on peak rate of tension rise (dT/dt) in the isolated muscle. METHODS: Left ventricular papillary muscles from Wistar rats were studied in isometric and isotonic afterloaded contractions. Muscles were analised in Krebs-Henseleit solution with calcium concentration of 2.52mM at 28 degrees C. The resting muscle length (preload) was maintained constant. The peak isometric developed tension (DT) and dT/dt were measured during increases of afterload (25, 50, 75 and 100% from DT). RESULTS: A rise in afterload corresponding to 50, 75 and 100% of DT, did not cause an increase in dT/dt values (p > 0.05). The dT/dt value decreased (p < 0.05) when afterload was changed from 75% to 25% of DT. CONCLUSION: The data suggest that an increase in the afterload from 50% of the DT did not promote changes in the dT/dt.
Resumo:
In vitro rates of overall proteolysis and the activities of four different proteolytic pathways (lysosomal, Ca2+ dependent, ATP dependent, and ATP independent), as well as rates of protein synthesis, were measured in soleus and extensor digitorum longus (EDL) muscles from streptozotocin- diabetic rats. In the acute phase (1-3 days) of diabetes, there was an increase in overall proteolysis that coincided with an increased activity of the Ca2+-dependent pathway in both soleus and EDL and of the ATP-dependent pathway in EDL. After longer periods (5-10 days) of diabetes, the overall rate of protein degradation decreased and reached values similar to or even lower than those of controls as a result of a reduction in the activities of Ca2+-dependent and ATP-dependent pathways. No change was detected at any time interval in the activity of the intralysosomal proteolytic system in muscles from diabetic animals. Rates of protein synthesis were already reduced 24 h after diabetes induction and decreased further thereafter. Insulin treatment restored to normal the activities of the proteolytic pathways and rates of protein synthesis.
Resumo:
Malnutrition is related to diabetes in tropical countries. In experimental animals, protein deficiency may affect insulin secretion. However, the effect of malnutrition on insulin receptor phosphorylation and further intracellular signaling events is not known. Therefore, we decided to evaluate the rate of insulin secretion and the early molecular steps of insulin action in insulin-sensitive tissues of an animal model of protein deficiency. Pancreatic islets isolated from rats fed a standard (17%) or a low (6%) protein diet were studied for their secretory response to increasing concentrations of glucose in the culture medium. Basal as well as maximal rates of insulin secretion were significantly lower in the islets isolated from rats fed a low protein diet. Moreover, the dose-response curve to glucose was significantly shifted to the right in the islets from malnourished rats compared with islets from control rats. During an oral glucose tolerance test, there were significantly lower circulating concentrations of insulin in the serum of rats fed a low protein diet in spite of no difference in serum glucose concentration between the groups, suggesting an increased peripheral insulin sensitivity. Immunoblotting and immunoprecipitation were used to study the phosphorylation of the insulin receptor and the insulin receptor substrate-1 as well as the insulin receptor substrate-1-p85 subunit of phosphatidylinositol 3-kinase association in response to insulin. Values were greater in hind-limb muscle from rats fed a low protein diet compared with controls. No differences were detected in the total amount of protein corresponding to the insulin receptor or insulin receptor substrate-1 between muscle from rats fed the two diets. Therefore, we conclude that a decreased glucose-induced insulin secretion in pancreatic islets from protein-malnourished rats is responsible, at least in part, for an increased phosphorylation of the insulin receptor, insulin receptor substrate-1 and its association with phosphatidylinositol 3-kinase. These might represent some of the factors influencing the equilibrium in glucose concentrations observed in animal models of malnutrition and undernourished subjects.
Resumo:
Purpose - To investigate the participation of contractile state and relaxation in cardiac muscle dysfunction during the transition from stable hypertrophy to cardiac decompensation in aging spontaneously hypertensive rats (SHR). Methods - isolated left ventricular papillary muscle function was studied in SHR with heart failure (SHR-F), in age-matched SHR without evidence of heart failure (SHR-NF), and in nonhypertensive controls Wistar-Kyoto rats (WKY). Muscles were analised in isometric and isotonic contractions in Krebs-Henseleit solution with calcium concentration of 1.25mM at 28°C. Results - Papillary muscles from SHR-F and SHR-NF demonstrated decreased active tension development and shortening velocity relative to normotensive WKY (p<0.05). SHR-F and SHR-NF did not differ. Compared with SHR-NF and WKY, muscle passive stiffness was increased in the failing SHR (p<0.05 versus WKY and SHR-NF). This parameter did not differ between SHR-NF and WKY (p> 0.05). Conclusion - These data suggest that the progression from stable hypertrophy to heart failure is associated with changes in the passive stiffness and is not related to depression of myocardial contractile function.
Resumo:
Maternal malnutrition was shown to affect early growth and leads to permanent alterations in insulin secretion and sensitivity of offspring. In addition, epidemiological studies showed an association between low birth weight and glucose intolerance in adult life. To understand these interactions better, we investigated the insulin secretion by isolated islets and the early events related to insulin action in the hind-limb muscle of adult rats fed a diet of 17% protein (control) or 6% protein [low (LP) protein] during fetal life, suckling and after weaning, and in rats receiving 6% protein during fetal life and suckling followed by a 17% protein diet after weaning (recovered). The basal and maximal insulin secretion by islets from rats fed LP diet and the basal release by islets from recovered rats were significantly lower than that of control rats. The dose-response curves to glucose of islets from LP and recovered groups were shifted to the right compared to control islets, with the half-maximal response (EC 50) occurring at 16.9 ± 1.3, 12.4 ± 0.5 and 8.4 ± 0.1 mmol/L, respectively. The levels of insulin receptor, as well as insulin receptor substrate-1 and phosphorylation and the association between insulin receptor substrate-1 and phosphatidylinositol 3-kinase were greater in rats fed a LP diet than in control rats. In recovered rats, these variables were not significantly different from those of the other two groups. These results suggest that glucose homeostasis is maintained in LP and recovered rats by an increased sensitivity to insulin as a result of alterations in the early steps of the insulin signal transduction pathway.
Resumo:
The aim of this study was to test the hypothesis that protein-calorie undernutrition decreases myocardial contractility jeopardizing ventricular function, and that ventricular dysfunction can be detected noninvasively. Five-month-old male Wistar-Kyoto rats were fed with regular rat chow ad libitum for 90 days (Control group, n = 14). A second group of rats received 50% of the amount of diet consumed by de control group (Food restricted group, n = 14). Global LV systolic function was evaluated in vivo, noninvasively, by transthoracic echocardiogram. After echocardiographic study, myocardial contractility was assessed in vitro in the isovolumetrically beating isolated heart in eight animals from each group (Langendorff preparation). The in vivo LV fractional shortening showed that food restriction depressed LV systolic function (p < 0.05). Myocardial contractility was impaired as assessed by the maximal rate of rise of LV pressure (+dP/dt), and developed pressure at diastolic pressure of 25 mmHg (p < 0.05). Furthermore, food restriction induced eccentric ventricular remodeling, and reduced myocardial elasticity and LV compliance (p < 0.05). In conclusion, food restriction causes systolic dysfunction probably due to myocardial contractility impairment and reduction of myocardial elasticity. © 2002 Elsevier B.V. All rights reserved.
Resumo:
Obesity is an increasing problem in several countries, leading to health problems. Physical exercise, in turn, can be used effectively by itself or in combination with dietary restriction to trigger weight loss. The present study was designed to evaluate the effects of aerobic exercise training on lipid profile of obese male Wistar rats in order to verify if this model may be of value for the study of exercise in obesity. Obesity was induced by MSG administration (4mg/g, each other day, from birth to 14 days old) After 14 from drug administration, the rats were separated into two groups: MSG-S (sedentary) and MSG-T (exercise trained). Exercise training consisted in 1h/day, 5 days/week, with an overload of 5% bw, for 10 weeks. Rats of the same age and strain, receiving saline at birth, were used as control (C), and subdivided into two groups: C-S and C-T. At the end of the experimental period, MSG-T and C-T rats showed similar blood lactate and muscle glycogen responses to exercise training and acute exercise. MSG-S rats showed significantly higher carcass fat, serum triacylglycerol, serum insulin and liver total fat than C-S rats. On the other hand, MSG-T rats had lower carcass fat, serum triacylglycerol and liver total fat than MSG-S rats. There were no statistical differences in food intake and serum free fatty acids among the groups studied. These data indicate that this model may be of value for the study of exercise effects on tissue and circulating lipid profile in obesity.
Resumo:
Alterations in the synthesis or enhanced inactivation of nitric oxide (NO) and increase in fibrin deposition in the vascular bed lead to an imbalance that can induced intravascular coagulation. NO is produced through L-arginine pathway by constitutive and inducible nitric oxide synthase (NOS). The inducible isoform can be activated by cytokines such as tumor necrosis factor alfa. We evaluated NO-induced tissue-plasminogen activator (t-PA) release from isolated aortic segments of Wistar rats measuring the fibrinolytic activity in the fibrin plate. Inhibition of NO biossynthesis with Nω-nitro-L-arginine (NωNLA) significantly attenuated the fibrinolytic activity (FA) evoked by aortic segments of this group (GII) compared to the saline group (GI). The administration of L-arginine produced restoration of FA in this group (GIII) treated with NωNLA suggesting that t-PA arising from segments of rat aorta is influenced by NO.
Resumo:
Objective: To assess the effect of growth hormone (GH) on myocardial remodeling in infarcted rats. Methods: This study comprised 24 Wistar rats divided into 3 groups as follows: 1) AMI-GH group - comprising 8 rats that underwent infarction and were treated with GH; 2) AMI group - comprising 8 rats that underwent infarction and received only the diluent of the GH solution; and 3) control group (C group) - comprising 8 rats that underwent simulated infarction. After 30 days, the animals underwent functional study through echocardiography, and the changes in myocardial contractility of the isolated left ventricular (LV) papillary muscle were studied. Results: The echocardiography identified an increase in the diastolic (C=7.32±0.49; AMI=8.50±0.73; AMI-GH=9.34±0.73; P<0.05) and systolic (C=3.38±0.47, AMI=5.16±1.24; AMI-GH=5.96±1.54; P<0.05) diameters (mm) in the LV of the infarcted animals. The AMI-GH group animals had a lower ejection fraction (%) (C=0.9±0.03; AMI=0.76±0.12; AMI-GH=0.72± 0.14; P<0.05 for C vs AMI-GH) compared with those in controls. The study of the isolated left ventricular papillary muscle showed that the AMI-GH group had changes (C=1.50±0.59; AMI= 1.28±0.38; AMI-GH=1.98±0.41; P<0.05 for C vs AMI-GH) only in the tension at rest (TR - g/mm2) and in the time delta for a 50% decrease in the tension developed (TR50, ms) after stimulation with calcium (C=23.75±9.16; AMI=-16.56±14.82; AMI-GH=-4.69±8.39; P<0.05 for C vs AMI-GH) and in the delta of tension developed (TD, g/mm2) after stimulation with isoproterenol (C=0.99±0.17; AMI=0.54±0.62; AMI-GH=0.08±0.75; P<0.05 for C vs AMI-GH) compared with those in control animals. Conclusion: The early administration of GH in the experimental infarction model in rats may result in adverse effects on the process of ventricular remodeling.
Resumo:
The objective of this study was to evaluate the role of retinoic acid in experimental postinfarction myocardial remodeling. Wistar rats were subjected to myocardial infarction (MI) and treated with retinoic acid (RA), 0.3 mg/(kg · d) (MI-RA, n = 29), or fed a control diet (MI, n = 34). After 6 mo, the surviving rats (MI-RA = 18 and MI = 22) underwent echocardiograms, and isolated hearts were tested for function in vitro. The cross-sectional area of the myocyte (CSA) and interstitial collagen fraction (IC) were measured in a cross section of the heart stained by hematoxylin-eosin and picrosirius red, respectively. The CSA was smaller in the MI-RA group [229 (220, 234) μm 2] [medians (lower quartile, upper quartile)] than in the MI group [238 (232, 241) μm 2] (P = 0.01) and IC was smaller in the MI-RA group [2.4 (1.7, 3.1)%] than in the MI group [3.5 (2.6, 3.9)%] (P = 0.05). The infarct size did not differ between the groups [MI = 44.6 (40.8, 48.4)%, MI-RA = 45 (38.6, 47.2)%]. Maximum rate of rise of left ventricular pressure (+dp/dt) was greater in the MI-RA group (2645 ± 886 mm Hg/s) than in the MI group (2081 ± 617 mm Hg/s) (P = 0.05). The other variables tested did not differ between groups. Retinoic acid supplementation of rats for 6 mo attenuates the ventricular remodeling process after MI. © 2005 American Society for Nutrition.
Resumo:
Acute renal failure is the most common complication in the lethal cases caused by snakebites in Brazil. Among the Brazilian venom snakes, Bothrops erythromelas is responsible for the majority of accidents in Northeastern Brazil. Didelphis marsupialis serum could inhibit myonecrotic, hemorrhagic, edematogenic hyperalgesic and lethal effects of envenomation determined by ophidian bites. In the present study, we evaluated the action of the anti-bothropic factor isolated from D. marsupialis on the renal effects promoted by B. erythromelas venom without systemic interference. Isolated kidneys from Wistar rats were perfused with Krebs-Henseleit solution containing 6% bovine serum albumin. We analyzed renal perfusion pressure (PP), renal vascular resistance (RVR), glomerular filtration rate (GFR), urinary flow (UF), and the percentages of sodium and potassium tubular transport (%TNa +, %TK +). The B. erythromelas venom (10 μg mL -1) decreased the PP (ct=108.71±5.09 mmHg; BE=65.21±5.6 mmHg*) and RVR (ct=5.76±0.65 mmHg mL -1 g -1 min -1; BE=3.10±0.45 mmHg mL -1 g -1 min -1*) . On the other hand, the GFR decreased at 60 min (ct 60=0.76±0. 07 mL g -1 min -1; BE 60=0.42±0.12 mL g -1 min -1*) and increased at 120 min (ct 120=0.72±0.01 mL g -1 min -1; BE 120=1.24±0.26 mL g -1 min -1*). The UF increased significantly when compared with the control group (ct=0.14±0.01 mL g -1 min -1; BE=0.47±0.08 mL g -1 min -1*). The venom reduced the %TNa + (ct 90=79.18±0.88%; BE 90=58.35±4.86%*) and %TK + (ct 90=67.20±4.04%; BE 90=57. 32±5.26%*) The anti-bothropic factor from D. marsupialis (10 μg mL -1) incubated with B. erythromelas venom (10 μg mL -1) blocked the effects on PP, RVR, %TNa +, and %TK +, but was not able to reverse the effects in UF and GFR promoted by venom alone. However, the highest concentration of D. marsupialis serum (30 μg mL -1) reversed all the renal effects induced by the venom. In conclusion, B. erythromelas venom altered all the renal functional parameters evaluated and the anti-bothropic factor from D. marsupialis was able to inhibit the effects induced by the venom in isolated kidney. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
Recent lines of evidence suggest that the beneficial effects of olive oil are not only related to its high content of oleic acid, but also to the antioxidant potential of its polyphenols. The aim of this work was determine the effects of olive oil and its components, oleic acid and the polyphenol dihydroxyphenylethanol (DPE), on serum lipids, oxidative stress, and energy metabolism on cardiac tissue. Twenty four male Wistar rats, 200 g, were divided into the following 4 groups (n = 6): control (C), OO group that received extra-virgin olive oil (7.5 mL/kg), OA group was treated with oleic acid (3.45 mL/kg), and the DPE group that received the polyphenol DPE (7.5 mg/kg). These components were administered by gavage over 30 days, twice a week. All animals were provided with food and water ad libitum The results show that olive oil was more effective than its isolated components in improving lipid profile, elevating high-density lipoprotein, and diminishing low-density lipoprotein cholesterol concentrations. Olive oil induced decreased antioxidant Mn-superoxide dismutase activity and diminished protein carbonyl concentration, indicating that olive oil may exert direct antioxidant effect on myocardium. DPE, considered as potential antioxidant, induced elevated aerobic metabolism, triacylglycerols, and lipid hydroperoxides concentrations in cardiac muscle, indicating that long-term intake of this polyphenol may induce its undesirable pro-oxidant activity on myocardium. © 2006 NRC Canada.
Resumo:
Background: Cancer-cachexia induces a variety of metabolic disorders on protein turnorver, decreasing protein synthesis and increasing protein degradation. Controversly, insulin, other hormones, and branched-chain amino acids, especially leucine, stimulate protein synthesis and modulate the activity of translation initiation factors involved in protein synthesis. Since the tumour effects are more pronounced when associated with pregnancy, ehancing muscle-wasting proteolysis, in this study, the influence of a leucine-rich diet on the protein synthesis caused by cancer were investigated. Methods: Pregnant rats with or without Walker 256 tumour were distributed into six groups. During 20 days of experiment, three groups were fed with a control diet: C - pregnant control, W - tumour-bearing, and P - pair-fed, which received the same amount of food as ingested by the W group; three other groups of pregnant rats were fed a leucine-rich diet: L - pregnant leucine, WL - tumour-bearing, and PL - pair-fed, which received the same amount of food as ingested by the WL group. Results: The gastrocnemius muscle of WL rats showed increased incorporation of leucine in protein compared to W rats; the leucine-rich diet also prevented the decrease in plasma insulin normally seen in W. The expression of translation initiation factors increased when tumour-bearing rats fed leucine-rich diet, with increase of ∼35% for eIF2α and eIF5, ∼17% for eIF4E and 20% for eIF4G; the expression of protein kinase S6K1 and protein kinase C was also highly enhanced. Conclusion: The results suggest that a leucine-rich diet increased the protein synthesis in skeletal muscle in tumour-bearing rats possibly through the activation of eIF factors and/or the S6kinase pathway. © 2007 Ventrucci et al; licensee BioMed Central Ltd.
Resumo:
The aim of this work was to evaluate the effect of physical preconditioning in the responsiveness of rat pulmonary rings submitted to lung ischemia/reperfusion (IR). Wistar rats were divided into three groups: Sedentary sham-operated (SD/SHAM); sedentary submitted to ischemia/reperfusion (SD/IR) and trained submitted to ischemia/reperfusion (TR/IR) animals. Exercise training consisted in sessions of 60 min/day running sessions, 5 days/week for 8 weeks. Left pulmonary IR was performed by occluding for 90 min and reperfusing for 120 min. After that, pulmonary arteries were isolated and concentration-response curves to acetylcholine (ACh), histamine (HIST), sodium nitroprusside (SNP), phenylephrine and U46619 were obtained. Neither potency (- log EC50) nor maximal responses (Emax) were modified for ACh and HIST in all groups. On the other hand, the potency for SNP was significantly increased in TR/IR group (8.23 ± 0.06) compared to SD/IR group (7.85 ± 0.04). Contractile responses mediated by a-adrenergic receptor were markedly decreased in IR groups (SD/IR: 6.75 ± 0.06 and TR/IR: 6.62 ± 0.04) compared to SD/SHAM (7.33 ± 0.05). No changes were seen for the U46619 in all groups. In conclusion, the present study shows that exercise training has no protective actions in the local blood vessel where the IR process takes place. © 2006 Elsevier Inc. All rights reserved.