197 resultados para Hamiltonian


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Física - IFT

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Among the three forms of relativistic Hamiltonian dynamics proposed by Dirac in 1949, the front form has the largest number of kinematic generators. This distinction provides useful consequences in the analysis of physical observables in hadron physics. Using the method of interpolation between the instant form and the front form, we introduce the interpolating scattering amplitude that links the corresponding time-ordered amplitudes between the two forms of dynamics and provide the physical meaning of the kinematic transformations as they allow the invariance of each individual time-ordered amplitude for an arbitrary interpolation angle. We discuss the rationale for using front form dynamics, nowadays known as light-front dynamics (LFD), and present a few explicit examples of hadron phenomenology that LFD uniquely can offer from first-principles quantum chromodynamics. In particular, model-independent constraints are provided for the analyses of deuteron form factors and the N Delta transition form factors at large momentum transfer squared Q(2). The swap of helicity amplitudes between the collinear and non-collinear kinematics is also discussed in deeply virtual Compton scattering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we study the periodic orbits of the Hamiltonian system with the Armburster-Guckenheimer Kim potential and its C1 non-integrability in the sense of Liouville-Arnold.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have studied the physical content of the following models: Maxwell, Proca, Self-Dual and Maxwell-Chern-Simons. One method we have used is the decomposition in the so called helicity variables, which can be done in the Lagrangian formalism. It leads to the correct counting of degrees of freedom without choosing a gauge condition. The method separates the propagating modes from the non-propagating ones. The Hamiltonian of the MCS and the AD is calculated. The second method used here is the analysis of the sign of the imaginary part of the residues of the two-point amplitude of the theory, showing that the models analyzed are free of ghosts. We also carry the dimensional reduction of the Maxwell-Chern-Simons and Self-Dual models from D = 2+1 to D = 1 + 1 dimensions. Next, we show that the dimensional reduction of those equivalent models also leads to equivalent models in D=1+1. Even more interesting is the fact, demonstrated here, that those reduced models can also be connected via gauge embedding. So the gauge embedding of the Self-Dual model into the Maxwell-Chern-Simons theory is preserved by the dimensional reduction

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Física - IGCE

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)