173 resultados para Fermi superfluid


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider a N - S box system consisting of a rectangular conductor coupled to a superconductor. The Green functions are constructed by solving the Bogoliubov-de Gennes equations at each side of the interface, with the pairing potential described by a step-like function. Taking into account the mismatch in the Fermi wave number and the effective masses of the normal metal - superconductor and the tunnel barrier at the interface, we use the quantum section method in order to find the exact energy Green function yielding accurate computed eigenvalues and the density of states. Furthermore, this procedure allow us to analyze in detail the nontrivial semiclassical limit and examine the range of applicability of the Bohr-Sommerfeld quantization method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A renormalization-group calculation of the temperature-dependent nuclear spin relaxation rate for a magnetic impurity in a metallic host is reported. The calculation follows a simplified procedure, which produces accurate rates in the low-temperature Fermi-liquid regime, although yielding only qualitatively reliable results at higher temperatures. In all cases considered, as the temperature T diminishes, the rates peak before decaying linearly to zero in the Fermi-liquid range. For T → 0, the results agree very well with Shiba's expression relating the low-temperature coefficient of the relaxation rate to the squared zero-temperature susceptibility. In the Kondo limit, the enhanced susceptibility associated with the Kondo resonance produces a very sharp peak in the relaxation rate near the Kondo temperature. © 1991.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Física - IGCE

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have used the periodic quantum-mechanical method with density functional theory at the B3LYP hybrid functional level in order to study the doping of SnO2 with pentavalent Sb5+. The 72-atom 2x3x2 supercell SnO2 (Sn24O48) was employed in the calculations. For the SnO2:4%Sb , one atom of Sn was replaced by one Sb atom. For the SnO2:8%Sb, two atoms of Sn were replaced by two Sb atoms. The Sb doping leads to an enhancement in the electrical conductivity of this material, because these ions substitute Sn4+ in the SnO2 matrix, leading to an electronic density rise in the conduction band, due to the donor-like behavior of the doping atom. This result shows that the bandgap magnitude depends on the doping concentration, because the energy value found for SnO2:4%Sb was 2.8eV whereas for SnO2:8%Sb it was 2.7eV. It was also verified that the difference between the Fermi level and the bottom of the conduction band is directly related to the doping concentration. - See more at: http://www.eurekaselect.com/117255/article#sthash.Z5ezhCQD.dpuf

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)