208 resultados para Copper vapor laser irradiation
Resumo:
Indium-tin oxide nanowires were deposited by excimer laser ablation onto catalyst-free oxidized silicon substrates at a low temperature of 500 degrees C in a nitrogen atmosphere. The nanowires have branches with spheres at the tips, indicating a vapor-liquid-solid (VLS) growth. The deposition time and pressure have a strong influence on the areal density and length of the nanowires. At the earlier stages of growth, lower pressures promote a larger number of nucleation centers. With the increase in deposition time, both the number and length of the wires increase up to an areal density of about 70 wires/mu m(2). After this point all the material arriving at the substrate is used for lengthening the existing wires and their branches. The nanowires present the single-crystalline cubic bixbyite structure of indium oxide, oriented in the [100] direction. These structures have potential applications in electrical and optical nanoscale devices.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of the present work is to analyze the histological changes on hamster buccal mucosa caused by the topical use of 7,12-dimethylbenzanthracene (DMBA) and exposition to a 220 μJ/pulse nitrogen laser light (@ 337 nm) at an average power of 2,3 mW. Twenty-one hamsters divided into two experimental groups were treated six times with DMBA. One hamster was kept as control. Group I was composed by ten hamsters and was submitted only to DMBA. Group II, also with ten hamsters, received the same treatment as group I and was exposed to the laser radiation. The time duration of each irradiation section was 10 seconds. All the treatment happened in alternated days. The histological analysis took place twice, after the end of the treatment and after sixty days. Both experimental groups presented dilatation of vessels, thickening of the epithelial tissue and the presence of inflammatory infiltrates. The preliminary results indicates that in group II the number of dilated vessels and its new area are much more significant than in group I.
Resumo:
Tissue repair is an integration of dynamic interactive processes that involves soluble mediators, blood components, production of extra-cellular matrix and mesenchymal cells. Many studies involving the use of LLLT shows that the healing process is favored by such therapy. The aim of this work was to evaluate, through histological analysis, the tissue effects of cutaneous wounds submitted to different intensities and a same irradiation dose with lasers in λ670 or λ685nm. Eighteen animals were divided in two experimental groups according to wavelength used (λ670 or λ685nm). Each one of these groups was divided still in three subgroups of three animals each, related to the intensity of applied irradiation (2, 15 or 25mW). Twelve animals acted as untreated controls and were not irradiated. The irradiation was carried out during seven days. The animals were sacrificed eight days after surgery. The specimens were removed, kept in 4% formaldehyde for 24 hours, routinely prepared to wax, stained with H&E and analyzed under light microscopy. The histological characteristics observed, so much in the irradiated animals, as in the control, they are indicative of a substitution repair process, however, the LLLT modulatory positive effect was observed, in the healing process, mainly associate to the use of the shorter wavelength and low power. The results of the present study indicate that LLLT improves cutaneous wound repair and best results are achieved when higher potencies associated to short wavelengths or lower potencies associated to higher wavelengths are used.
Resumo:
Objective: The aim of this study was to evaluate the effectiveness of the clinical use of the gallium-aluminum-arsenium (GaAlAs) laser at the maximum and minimum energies recommended by the manufacturer for the treatment of dentine hypersensitivity. Background Data: Dentine hypersensitivity (DH) is a response to a stimulus that would not usually cause pain in a healthy tooth. It is characterized by sharp pain of short duration from the denuded dentin. Its etiology is unknown. The dentin only begins to show sensitivity when exposed to the buccal environment. This exposure can result after removal of the enamel and/or dental cement, or after root denudation. Different treatments are proposed for this disorder. Materials and Methods: In this study, 25 patients, with a total number of 106 cases of DH, were treated with GaAlAs low-level laser therapy (LLLT). 65% of the teeth were premolars; 14% were incisors and molars; 6.6% were canines. The teeth were irradiated with 3 and 5 J/cm 2 for up to six sessions, with an interval of 72 h between each application, and they were evaluated initially, after each application, and at 15 and 60 days follow-up post-treatment. Results: The treatment was effective in 86.53% and 88.88% of the irradiated teeth, respectively, with the minimum and maximum energy recommended by the manufacturer. There was a statistically significant difference between DH and after a follow-up of 60 days for both groups. The difference among the energy maximum and minimum was not significant. Conclusion: The GaAlAs low-level laser was effective in reducing initial DH. A significant difference was found between initial values of hypersensitivity and after 60 days follow-up post-treatment. No significant difference was found between minimum (3 J/cm 2) and maximum (5 J/cm 2) applied energy.
Resumo:
Objective: The objective of the present investigation was to assess the histological effects of different wavelengths and intensities on the healing process of cutaneous wounds. Background Data: Tissue repair is a dynamic interactive process which involves mediators, cells and extra-cellular matrix. Several reports on the use of laser therapy have shown that the healing process is positively affected when the correct parameters are used. Methods: Eighteen standardized wounds were surgically created on the dorsum of male and female Wistar rats, which were subsequently divided into two experimental groups according to wavelength used λ.670 or λ685 nm) for lasertherapy (LLLT). Each group was divided into three subgroups of three animals according to the intensity of the applied irradiation (2,15, or 25 mW). Twelve animals were used as entreated controls and were not irradiated. The irradiation was carried out during seven consecutive days. The animals were sacrificed eight days after surgery. The specimens were removed, kept in 4% formaldehyde for 24 h, routinely prepared to wax, stained with H&E, and analyzed under light microscopy. Results: For both groups, light microscopy showed a substitution repair process; however, when LLLT was used, a positive biomodulatory effect was detectable, chiefly associated with shorter wavelength and low intensity. Conclusions: The results of the present study indicate that LLLT improved cutaneous wound repair and that the effect is a result of an inversely proportional relationship between wavelength and intensity, with treatment more effective when combining higher intensity with short wavelength or lower intensity with higher wavelength.
Resumo:
This study sought to assess the pulp chamber temperature in different groups of human teeth that had been bleached using hydrogen peroxide gel activated with halogen lamps or hybrid LED/laser appliances. Four groups of ten teeth (maxillary central incisors, mandibular incisors, mandibular canines, and maxillary canines) were used. A digital thermometer with a K-type thermocouple was placed inside pulp chambers that had been filled with thermal paste. A 35% hydrogen peroxide-based red bleaching gel was applied to all teeth and photocured for a total of three minutes and 20 seconds (five activations of 40 seconds each), using light from an LED/laser device and a halogen lamp. The temperatures were gauged every 40 seconds and the data were analyzed by three-way ANOVA, followed by Tukey's test. Regardless of the light source, statistically significant differences were observed between the groups of teeth. The mean temperature values (±SD) were highest for maxillary central incisors and lowest for mandibular canines. The halogen lamp appliance produced more pulp chamber heating than the LED/laser appliance. The increase in irradiation time led to a significant increase in temperature.
Resumo:
This study used scanning electron microscopy (SEM) to evaluate the morphology and adhesion of blood components on root surfaces instrumented by curettes, piezoelectric ultrasonic scaler and Er,Cr:YSGG laser. One hundred samples from 25 teeth were divided into 5 groups: 1) Curettes; 2) Piezoelectric ultrasonic scaler; 3) Curettes plus piezoelectric ultrasonic scaler; 4) Er,Cr:YSGG laser; 5) Curettes plus Er,Cr:YSGG laser. Ten samples from each group were used for analysis of root morphology and the other 10 were used for analysis of adhesion of blood components on root surface. The results were analyzed statistically by the Kruskall-Wallis and Mann-Whitney tests with a significance level of 5%. The group treated with curettes showed smoother surfaces when compared to the groups were instrumented with piezoelectric ultrasonic scaler and the Er,Cr:YSGG laser. The surfaces instrumented with piezoelectric ultrasonic scaler and Er,Cr:YSGG laser, alone or in combination with hand scaling and root planing, did not differ significantly (p>0.05) among themselves. No statistically significant differences (p>0.05) among groups were found as to the adhesion of blood components on root surface. Ultrasonic instrumentation and Er,Cr:YSGG irradiation produced rougher root surfaces than the use of curettes, but there were no differences among treatments with respect to the adhesion of blood components.
Resumo:
The aim of this study was to evaluate the effect of specific parameters of low-level laser therapy (LLLT) on biofilms formed by Streptococcus mutans, Candida albicans or an association of both species. Single and dual-species biofilms - SSB and DSB - were exposed to laser doses of 5, 10 or 20 J/cm 2 from a near infrared InGaAsP diode laser prototype (LASERTable; 780 ± 3 nm, 0.04 W). After irradiation, the analysis of biobilm viability (MTT assay), biofilm growth (cfu/mL) and cell morphology (SEM) showed that LLLT reduced cell viability as well as the growth of biofilms. The response of S. mutans (SSB) to irradiation was similar for all laser doses and the biofilm growth was dose dependent. However, when associated with C. albicans (DSB), S. mutans was resistant to LLLT. For C. albicans, the association with S. mutans (DSB) caused a significant decrease in biofilm growth in a dose-dependent fashion. The morphology of the microorganisms in the SSB was not altered by LLLT, while the association of microbial species (DSB) promoted a reduction in the formation of C. albicans hyphae. LLLT had an inhibitory effect on the microorganisms, and this capacity can be altered according to the interactions between different microbial species.
Resumo:
The aim of this study was to determine adequate energy doses using specific parameters of LLLT to produce biostimulatory effects on human gingival fibroblast culture. Cells (3 10 4 cells/cm 2) were seeded on 24-well acrylic plates using plain DMEM supplemented with 10 fetal bovine serum. After 48-hour incubation with 5 CO2 at 37C, cells were irradiated with a InGaAsP diode laser prototype (LASERTable; 780 3 nm; 40mW) with energy doses of 0.5, 1.5, 3, 5, and 7J/cm 2. Cells were irradiated every 24h totalizing 3 applications. Twenty-four hours after the last irradiation, cell metabolism was evaluated by the MTT assay and the two most effective doses (0.5 and 3J/cm 2) were selected to evaluate the cell number (trypan blue assay) and the cell migration capacity (wound healing assay; transwell migration assay). Data were analyzed by the Kruskal-Wallis and Mann-Whitney nonparametric tests with statistical significance of 5. Irradiation of the fibroblasts with 0.5 and 3J/cm 2 resulted in significant increase in cell metabolism compared with the nonrradiated group (P 0.05). Both energy doses promoted significant increase in the cell number as well as in cell migration (P 0.05). These results demonstrate that, under the tested conditions, LLLT promoted biostimulation of fibroblasts in vitro. Copyright © 2012 Fernanda G. Basso et al.
Resumo:
Low-level laser (LLL) has been used on peri-implant tissues for accelerating bone formation. However, the effect of one session of LLL in the strength of bone-implant interface during early healing process remains unclear. The present study aims to evaluate the removal torque of titanium implants irradiated with LLL during surgical preparation of implant bed, in comparison to non-irradiation. Sixty-four Wistar rats were used. Half of the animals were included in LLL group, while the other half remained as control. All animals had the tibia prepared with a 2 mm drill, and a titanium implant (2.2 × 4 mm) was inserted. Animals from LLL group were irradiated with laser (gallium aluminum arsenide), with a wavelength of 808 nm, a measured power output of 50 mW, to emit radiation in collimated beams (0.4 cm2), for 1 min and 23 s, and an energy density of 11 J/cm2. Two applications (22 J/cm 2) were performed immediately after bed preparation for implant installation. Flaps were sutured, and animals from both groups were sacrificed 7, 15, 30, and 45 days after implant installation, when load necessary for removing implant from bone was evaluated by using a torquimeter. In both groups, torque values tended to increase overtime; and at 30 and 45 days periods, values were statistically higher for LLL group in comparison to control (ANOVA test, p < 0.0001). Thus, it could be suggested that a single session of irradiation with LLL was beneficial to improve bone-implant interface strength, contributing to the osseointegration process. © 2012 Springer-Verlag London Ltd.
Resumo:
Epithelial cells play an important role in reparative events. Therefore, therapies that can stimulate the proliferation and metabolism of these cells could accelerate the healing process. To evaluate the effects of low-level laser therapy (LLLT), human keratinocytes were irradiated with an InGaAsP diode laser prototype (LASERTable; 780 ± 3 nm; 40 mW) using 0.5, 1.5, 3, 5, and 7 J/cm2 energy doses. Irradiations were done every 24 h totaling three applications. Evaluation of cell metabolism (MTT assay) showed that LLLT with all energy doses promoted an increase of cell metabolism, being more effective for 0.5, 1.5, and 3 J/cm2. The highest cell counts (Trypan blue assay) were observed with 0.5, 3, and 5 J/cm2. No statistically significant difference for total protein (TP) production was observed and cell morphology analysis by scanning electron microscopy revealed that LLLT did not promote morphological alterations on the keratinocytes. Real-time polymerase chain reaction (qPCR) revealed that LLLT also promoted an increase of type I collagen (Col-I) and vascular endothelial growth factor (VEGF) gene expression, especially for 1.5 J/cm2, but no change on fibroblast growth factor-2 (FGF-2) expression was observed. LLLT at energy doses ranging from 0.5 to 3 J/cm2 promoted the most significant biostimulatory effects on cultured keratinocytes. © 2012 Springer-Verlag London Ltd.
Resumo:
Objectives: The aim of this study was to evaluate the effects of pre-irradiation time (PIT) on curcumin (Cur)-mediated photodynamic therapy (PDT) against planktonic and biofilm cultures of reference strains of Candida albicans, Candida glabrata and Candida dubliniensis. Materials and methods: Suspensions and biofilms of Candida species were maintained in contact with different concentrations of Cur for time intervals of 1, 5, 10 and 20 min before irradiation and LED (light emitting diode) activation. Additional samples were treated only with Cur, without illumination, or only with light, without Cur. Control samples received neither light nor Cur. After PDT, suspensions were plated on Sabouraud Dextrose Agar, while biofilm results were obtained using the XTT-salt reduction method. Confocal Laser Scanning Microscopy (CLSM) observations were performed to supply a better understanding of Cur penetration through the biofilms after 5 and 20 min of contact with the cultures. Results: Different PITs showed no statistical differences in Cur-mediated PDT of Candida spp. cell suspensions. There was complete inactivation of the three Candida species with the association of 20.0 μM Cur after 5, 10 and 20 min of PIT. Biofilm cultures showed significant reduction in cell viability after PDT. In general, the three Candida species evaluated in this study suffered higher reductions in cell viability with the association of 40.0 μM Cur and 20 min of PIT. Additionally, CLSM observations showed different intensities of fluorescence emissions after 5 and 20 min of incubation. Conclusion: Photoinactivation of planktonic cultures was not PIT-dependent. PIT-dependence of the biofilm cultures differed among the species evaluated. Also, CLSM observations confirmed the need of higher time intervals for the Cur to penetrate biofilm structures. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Objectives: The objective of this study was to apply low-level laser therapy (LLLT) to accelerate the recovery process of a child patient with Bell's palsy (BP). Design: This was a prospective study. Subject: The subject was a three-year-old boy with a sudden onset of facial asymmetry due to an unknown cause. Materials and methods: The low-level laser source used was a gallium aluminum arsenide semiconductor diode laser device (660 nm and 780 nm). No steroids or other medications were given to the child. The laser beam with a 0.04-cm2 spot area, and an aperture with approximately 1-mm diameter, was applied in a continuous emission mode in direct contact with the facial area. The duration of a laser session was between 15 and 30 minutes, depending on the chosen points and the area being treated. Light was applied 10 seconds per point on a maximum number of 80 points, when the entire affected (right) side of the face was irradiated, based on the small laser beam spot size. According to the acupuncture literature, this treatment could also be carried out using 10-20 Chinese acupuncture points, located unilaterally on the face. In this case study, more points were used because the entire affected side of the face (a large area) was irradiated instead of using acupuncture points. Outcome measures: The House-Brackmann grading system was used to monitor the evolution of facial nerve motor function. Photographs were taken after every session, always using the same camera and the same magnitude. The three-year-old boy recovered completely from BP after 11 sessions of LLLT. There were 4 sessions a week for the first 2 weeks, and the total treatment time was 3 weeks. Results: The result of this study was the improvement of facial movement and facial symmetry, with complete reestablishment to normality. Conclusions: LLLT may be an alternative to speed up facial normality in pediatric BP. © Copyright 2013, Mary Ann Liebert, Inc. 2013.
Resumo:
Low-level laser therapy (LLLT) has been considered as an adjuvant treatment for bisphosphonate-related osteonecrosis, presenting positive clinical outcomes. However, there are no data regarding the effect of LLLT on oral tissue cells exposed to bisphosphonates. This study aimed to evaluate the effects of LLLT on epithelial cells and gingival fibroblasts exposed to a nitrogen-containing bisphosphonate - zoledronic acid (ZA). Cells were seeded in wells of 24-well plates, incubated for 48 h and then exposed to ZA at 5 μM for an additional 48 h. LLLT was performed with a diode laser prototype - LaserTABLE (InGaAsP - 780 nm ± 3 nm, 25 mW), at selected energy doses of 0.5, 1.5, 3, 5, and 7 J cm-2 in three irradiation sessions, every 24 h. Cell metabolism, total protein production, gene expression of vascular endothelial growth factor (VEGF) and collagen type I (Col-I), and cell morphology were evaluated 24 h after the last irradiation. Data were statistically analyzed by Kruskal-Wallis and Mann-Whitney tests at 5% significance. Selected LLLT parameters increased the functions of epithelial cells and gingival fibroblasts treated with ZA. Gene expression of VEGF and Col-I was also increased. Specific parameters of LLLT biostimulated fibroblasts and epithelial cells treated with ZA. Analysis of these in vitro data may explain the positive in vivo effects of LLLT applied to osteonecrosis lesions. © 2013 Astro Ltd.