312 resultados para Cassia rugosa
Resumo:
The growth analysis allows the characterization and understanding of the upland rice cultivars development. This study aimed at characterizing, by using the growth analysis, the physiological components and agronomic performance, as well as the differences among traditional, intermediate and modern upland rice cultivars. The experiment was conducted under upland rice conditions, favored by the use of supplementary irrigation. The experimental design was randomized blocks, with three treatments consisting of traditional (Caiapó), modern (Maravilha) and intermediate (BRS Primavera) cultivars and eight replications. The leaf area index (LAI), instantaneous growth rate (IGR), relative growth rate (RGR), net assimilation rate (NAR) and specific leaf area (SLA), as well as grain yield and yield components, were evaluated. The intermediate and traditional cultivars presented the highest total dry matter accumulation rate, while the traditional and modern ones showed the highest LAI. The intermediate cultivar presented the highest IGR, RGR, NAR and SLA levels, as well as the highest grain yield, as a consequence of the higher spikelet fertility and 1,000 grain mass.
Resumo:
The incidence of fungal infections has increased significantly, so contributing to morbidity and mortality. This is caused by an increase in antimicrobial resistance and the restricted number of antifungal drugs, which retain many side effects. Candida species are major human fungal pathogens that cause both mucosal and deep tissue infections. Recent evidence suggests that the majority of infections produced by this pathogen are associated with biofilm growth. Biofilms are biological communities with a high degree of organization, in which micro-organisms form structured, coordinated and functional communities. These biological communities are embedded in a self-created extracellular matrix. Biofilm production is also associated with a high level of antimicrobial resistance of the associated organisms. The ability of Candida species to form drugresistant biofilms is an important factor in their contribution to human disease. The study of plants as an alternative to other forms of drug discovery has attracted great attention because, according to the World Health Organization, these would be the best sources for obtaining a wide variety of drugs and could benefit a large population. Furthermore, silver nanoparticles, antibodies and photodynamic inactivation have also been used with good results. This article presents a brief review of the literature regarding the epidemiology of Candida species, as well as their pathogenicity and ability to form biofilms, the antifungal activity of natural products and other therapeutic options. © 2013 SGM.
Resumo:
The aim of this work was to evaluate the population density of Pratylenchus brachyurus and Pratylenchus zeae associated with Brachiaria brizantha, B. decumbens and B. humidicola and their influence on forage availability and quality. The experiment was conducte in the Hisaeda Farm, Terenos, MS, Brazil. Soil, roots and plant aerial part were harvest with ten replications each, in one square meter randomized sets encompassing three treatments: Good, Intermediary and Bad, visually characterized, considering the percentage of green material. P. brachyurus and P. zeae density were evaluated in soil and plant roots. Dry matter of green, dead and re-growth materials, plant nutritional status and forage quality were assessed in the aerial plant part. Soil fertility was determined in all harvested samples. Both nematode species were identified from all samples, with a larger numbe in the roots (between 87-311 P. brachyurus and 1-61 P. zeae.10 g-1) than in the soil (0-8 P. brachyurus and 1-39 P. zeae.200 cm-3), however, no significant differences were found in the number of specimens between treatments. Considering that these forage species are perennial and host Pratylenchus spp, there is a tendency to increase the population of these pathogens over time, becoming a serious phytosanitary problem.
Resumo:
Endophytic fungi are a rich source of new and biologically active natural products. They colonize a relatively unexplored ecological habitat and their secondary metabolism is particularly active, presumably due to metabolic interactions with their hosts. In the course of our continuing investigations for new and bioactive compounds from endophytic fungi from brazilian flora Alibertia macrophylla, Caseria sylvestris, Ocotea corymbosa, Cassia spectabilis, Piper aduncum, Cryptocaria mandioccana, Xylopia aromatica and Palicourea marcgravii were investigated. Forty two natural products were isolated and their structures were established on the basis of comprehensive spectral analysis, mainly using 1D and 2D NMR experiments. The compounds were tested in their antifungal, antioxidant, anticholinesterasic and anticancer activities.
Resumo:
Turmeric oleoresin is a colorant prepared by solvent extraction of turmeric (Curcuma longa L.). Curcumin, the major pigment present in turmeric, has been described as a potent antioxidant, anti-inflammatory and anticarcinogenic agent. Turmeric pigments are lipid soluble and water insoluble and are sensitive to light, heat, oxygen and pH, which can be overcome by microencapsulation of turmeric oleoresin. The aim of this work was to investigate microencapsulation of turmeric oleoresin by complex coacervation using gelatin and gum Arabic as encapsulants and freeze-drying as the drying method. The coacervation process was studied by varying the concentration of biopolymer solution (2.5, 5.0 and 7.5%) and the core material: total encapsulant ratio (25, 50, 75 and 100%). Microcapsules were evaluated for encapsulation efficiency, morphology, solubility and stability to light. Encapsulation efficiency ranged from 49 to 73% and samples produced with 2.5% of wall material and 100% core: encapsulant ratio showed better stability to light. © 2012 Wiley Periodicals, Inc.
Resumo:
Although vast areas in tropical regions have weathered soils with low potassium (K) levels, little is known about the effects of K supply on the photosynthetic physiology of trees. This study assessed the effects of K and sodium (Na) supply on the diffusional and biochemical limitations to photosynthesis in Eucalyptus grandis leaves. A field experiment comparing treatments receiving K (+K) or Na (+Na) with a control treatment (C) was set up in a K-deficient soil. The net CO2 assimilation rates were twice as high in +K and 1.6 times higher in +Na than in the C as a result of lower stomatal and mesophyll resistance to CO2 diffusion and higher photosynthetic capacity. The starch content was higher and soluble sugar was lower in +K than in C and +Na, suggesting that K starvation disturbed carbon storage and transport. The specific leaf area, leaf thickness, parenchyma thickness, stomatal size and intercellular air spaces increased in +K and +Na compared to C. Nitrogen and chlorophyll concentrations were also higher in +K and +Na than in C. These results suggest a strong relationship between the K and Na supply to E. grandis trees and the functional and structural limitations to CO2 assimilation rates. © 2013 John Wiley & Sons Ltd.
Resumo:
Were analyzed 29 samples, 16 wet and 13 dry cat food of different flavors. The iodine levels ranged from 2.7 to 3.4 (average 2.95 mg/kg/MS) in dry food and 2.9 to 4.0 (average 3.4 mg/kg/MS) in the wet food. Eight samples (27.6%) specified on the package the assurance level (maximum) of iodine, with a dry (2.0 mg/kg/diet) and seven wet (0.04 mg/kg/diet). All non-compliant, because the values were higher than declared. Cats fed commercial diets consume proportionally more iodine in wet food than cats fed dry diets, but both with high levels of iodine. All samples analyzed were above the amounts stated on the labels. Accordingly, the wet and dry commercial food for cats show no reliable values with those reported, resulting in a possible excessive intake of this trace element for animals in question.
Resumo:
Background: Brown propolis is the major type of propolis found in Cuba; its principal component is nemorosone, the major constituent of Clusia rosea floral resins. Nemorosone has received increasing attention due to its strong in vitro anti-cancer action. The citotoxicity of nemorosone in several human cancer cell lines has been reported and correlated to the direct action it has on the estrogen receptor (ER). Breast cancer can be treated with agents that target estrogen-mediated signaling, such as antiestrogens. Phytoestrogen can mimic or modulate the actions of endogenous estrogens and the treatment of breast cancer with phytoestrogens may be a valid strategy, since they have shown anti-cancer activity.Methods: The aim of the present investigation was to assess the capacity of nemorosone to interact with ERs, by Recombinant Yeast Assay (RYA) and E-screen assays, and to determine by comet assay, if the compound causes DNA-damaging in tumoral and non-tumoral breast cells.Results: Nemorosone did not present estrogenic activity, however, it inhibited the 17-β-estradiol (E2) action when either of both methods was used, showing their antiestrogenicity. The DNA damage induced by the benzophenone in cancer and normal breast cells presented negative results.Conclusion: These findings suggest that nemorosone may have therapeutic application in the treatment of breast cancer. © 2013 Camargo et al.; licensee BioMed Central Ltd.
Resumo:
The sugarcane mechanized planting is becoming increasingly widespread in Brazil due to a higher operability and better working conditions offered to workers compared to other types of planting. Studies related to this topic are insufficient or scarce in Brazil. In this context, the aim of this study was to evaluate the operation quality of sugarcane mechanized planting in two operation shifts, by means of statistical process control. The mechanized planting was held on March 2012 and statistical design was completely randomized with two treatments, totaling 40 replications for the day shift and 40 replications for the night shift. The variables evaluated were: speed, engine rotation, engine oil pressure, water temperature of the engine, effective field capacity and the time consumption hourly and effective fuel. The use of statistical control charts showed that random intrinsic do not cause this process. The tractor alignment error showed outliers in the day and night shifts operations, indicating a possible delay in receiving the signal. The water temperature of the engine and the effective fuel consumption showed lower variability in nighttime operation with average values of 81°C and 22.66 L ha-1, respectively. The hourly fuel consumption had greater variability and consequently lower quality during the night of the operation, with an average consumption of 25.46 L h-1 while the day shift showed 26.86 L h-1.
Resumo:
Background and Aims: Recent studies showed a positive tree response to Na addition in K-depleted tropical soils. Our study aimed to gain insight into the effects of K and Na fertilizations on leaf area components for a widely planted tree species. Methods: Leaf expansion rates, as well as nutrient, polyol and soluble sugar concentrations, were measured from emergence to abscission of tagged leaves in 1-year-old Eucalyptus grandis plantations. Leaf cell size and water status parameters were compared 1 and 2 months after leaf emergence in plots with KCl application (+K), NaCl application (+Na) and control plots (C). Results: K and Na applications enhanced tree leaf area by increasing both leaf longevity and the mean area of individual leaves. Higher cell turgor in treatments +K and +Na than in the C treatment resulting from higher concentrations of osmotica contributed to increasing both palisade cell diameters and the size of fully expanded leaves. Conclusions: Intermediate total tree leaf area in treatment +Na compared to treatments C and +K might result from the capacity of Na to substitute K in osmoregulatory functions, whereas it seemed unable to accomplish other important K functions that contribute to delaying leaf senescence. © 2013 Springer Science+Business Media Dordrecht.
Early endosome antigen 1 (EEA1) decreases in macrophages infected with Paracoccidioides brasiliensis
Resumo:
Paracoccidioidomycosis (PCM) is a chronic granulomatous disease caused by the dimorphic fungus Paracoccidioides brasiliensis, endemic in Latin America. P. brasiliensis has been observed in epithelial cells in vivo and in vitro, as well as within the macrophages. The identification of the mechanism by which it survives within the host cell is fertile ground for the discovery of its pathogenesis since this organism has the ability to induce its own endocytosis in epithelial cells and most likely in macrophages. The study of the expression of endocytic proteins pathway and co-localization of microorganisms enable detection of the mechanism by which microorganisms survive within the host cell. The aim of this study was to evaluate the expression of the endocytic protein EEA1 (early endosome antigen 1) in macrophages infected with P. brasiliensis. For detection of EEA1, three different techniques were employed: immunofluorescence, real-time polymerase chain reaction (PCR) and immunoblotting. In the present study, decreased expression of EEA1 as well as the rearrangement of the actin was observed when the fungus was internalized, confirming that the input mechanism of the fungus in macrophages occurs through phagocytosis. © 2013 ISHAM.
Resumo:
Chronic cardiomyopathy is the most important clinical form of Chagas disease, and it is characterised by myocarditis that is associated with fibrosis and organ dysfunction. Alternative treatment options are important tools to modulate host immune responses. The main goal of this work was to evaluate the anti-inflammatory actions of melatonin during the chronic phase of Chagas disease. TNF-α, IL-10 and nitrite concentrations were evaluated as predictive factors of immune modulation. Creatine phosphokinase-MB (CK-MB), cardiac inflammatory foci and heart weight were assessed to evaluate the efficacy of the melatonin treatment. Male Wistar rats were infected with 1 × 105 blood trypomastigotes of the Y strain of Trypanosoma cruzi and kept untreated for 60 days to mimic chronic infection. After this period, the rats were orally treated with melatonin 50 mg/kg/day, and the experiments were performed 90, 120, and 180 days post-infection. Melatonin treatment significantly increased the concentration of IL-10 and reduced the concentrations of NO and TNF-α produced by cardiomyocytes. Furthermore, it led to decreased heart weight, serum CK-MB levels and inflammatory foci when compared to the untreated and infected control groups. We conclude that melatonin therapy is effective at protecting animals against the harmful cardiac inflammatory response that is characteristic of chronic T. cruzi infection. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Biologia Geral e Aplicada - IBB
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)