293 resultados para Calving
Genetic parameters for test-day milk yield, 305-day milk yield, and lactation length in Guzerat cows
Resumo:
Milk production in tropical environments requires the use of crossbreeding systems including breeds well adapted to harsh conditions, but with lower productivities when compared to specialized breeds. Besides the genetic improvement for milk production, lactation lengths also need to be studied for most of these breeds. Accordingly, genetic parameters were estimated for 305-day cumulative milk yield (MY305), test-day milk yield (TDMY), and lactation length (LL) using information from the first lactations of 2816 Guzerat cows selected for milk production in 28 herds in Brazil. Contemporary groups were defined as herd, year and season of the test for TDMY, and as herd, year and season of calving for MY305 and LL. Variance components were estimated with the restricted maximum likelihood method under a multi-trait animal model. Heritabilities estimated for TDMY ranged from 0.16 to 0.24, and were 0.24 and 0.12 for MY305 and LL, respectively. Genetic correlations were high and positive, ranging from 0.51 to 0.99 among TDMY records, from 0.81 to 0.98 between each TDMY and MY305, and from 0.71 to 0.94 between each TDMY and LL. Genetic parameters obtained in this study indicated the possibility of using test-day records for the prediction of breeding values for milk yield in this population of the Guzerat breed. The use of TDMY as selection criteria would result in indirect gains in MY305 and LL. However, the highest response to selection for MY305 would be obtained by direct selection for this trait. © 2012 Elsevier B.V.
Resumo:
A total of 61,528 weight records from 22,246 Nellore animals born between 1984 and 2002 were used to compare different multiple-trait analysis methods for birth to mature weights. The following models were used: standard multivarite model (MV), five reduced-rank models fitting the first 1, 2, 3, 4 and 5 genetic principal components, and five models using factor analysis with 1, 2, 3, 4 and 5 factors. Direct additive genetic random effects and residual effects were included in all models. In addition, maternal genetic and maternal permanent environmental effects were included as random effects for birth and weaning weight. The models included contemporary group as fixed effect and age of animal at recording (except for birth weight) and age of dam at calving as linear and quadratic effects (for birth weight and weaning weight). The maternal genetic, maternal permanent environmental and residual (co)variance matrices were assumed to be full rank. According to model selection criteria, the model fitting the three first principal components (PC3) provided the best fit, without the need for factor analysis models. Similar estimates of phenotypic, direct additive and maternal genetic, maternal permanent environmental and residual (co)variances were obtained with models MV and PC3. Direct heritability ranged from 0.21 (birth weight) to 0.45 (weight at 6 years of age). The genetic and phenotypic correlations obtained with model PC3 were slightly higher than those estimated with model MV. In general, the reduced-rank model substantially decreased the number of parameters in the analyses without reducing the goodness-of-fit. © 2013 Elsevier B.V.
Resumo:
The objective of this study was to evaluate the influence of inbreeding depression on traits of buffaloes from Brazil. Specifically, the traits studied were body weight at 205 and 365 days of age, average daily gain from birth to 205 days (ADG_205), average daily gain between 205 and 365 days (ADG205_365) in Mediterranean buffaloes, and milk yield, lactation length, age of first calving and calving intervals in Murrah buffaloes. Inbreeding effects on the traits were determined by fitting four regression models (linear, quadratic, exponential and Michaelis-Menten) about the errors generated by the animal model. The linear model was only significant (P<0.05) for growth traits (exception of ADG205_365). The exponential and Michaelis-Menten models were significant (P<0.01) for all the studied traits while the quadratic model was not significant (P>0.05) for any of the traits. Weight at 205 and 365 days of age decreased 0.25kg and 0.39kg per 1% of increase in inbreeding, respectively. The inbred animals (F=0.25) produced less milk than non-inbred individuals: 50.4kg of milk. Moreover, calving interval increased 0.164 days per 1% of increase in inbreeding. Interestingly, inbreeding had a positive effect on age at first calving and lactation length, decreasing age of first calving and increasing lactation length. © 2012 Japanese Society of Animal Science.
Resumo:
The objective of the present study was to evaluate the genetic and non-genetic effects that influencevigor at birth and preweaning mortality in Nellore calves. A total of 11,727 records of births that occurred between 1978 and 2006, offspring of 363 sires, were analyzed. Poor calf vigor at birth (VB) and preweaning mortality divided into stillbirth (SB), early mortality (EM) and total mortality (TM) were analyzed as binary variables. Generalized linear models were used for the evaluation of non-genetic effects and generalized linear mixed models for genetic effects (sire and animal models). The incidences were 4.75% for VB, 2.66% for SB, 5.28% for EM, and 7.99% for TM. Birth weight was the effect that most influenced the traits studied. Calves weighing less than 22kg(females) and less than 24kg (males) were at a higher risk of low vigor and preweaning mortality. Preweaning mortality was higher among calves born from cows aged .3 and .11 years at calving compared with cows aged 7 to 10 years. Male calves presented less vigor and higher preweaning mortality than female calves. Selection for postweaning weight did not influence preweaning mortality. The heritability estimates ranged between 0.01 and 0.09 for VB, 0.00 and 0.27 for SB, 0.03 and 0.17 for EM and 0.02 and 0.10 for TM. Stillbirth should be included as a selection criterion in breeding programs of Nellore cattle, alone or as part of a selection index, aiming to reduce preweaning mortality. © 2013 Sociedade Brasileira de Zootecnia.
Resumo:
Background: Birth weight (BW) is an economically important trait in beef cattle, and is associated with growth- and stature-related traits and calving difficulty. One region of the cattle genome, located on Bos primigenius taurus chromosome 14 (BTA14), has been previously shown to be associated with stature by multiple independent studies, and contains orthologous genes affecting human height. A genome-wide association study (GWAS) for BW in Brazilian Nellore cattle (Bos primigenius indicus) was performed using estimated breeding values (EBVs) of 654 progeny-tested bulls genotyped for over 777,000 single nucleotide polymorphisms (SNPs).Results: The most significant SNP (rs133012258, PGC = 1.34 × 10-9), located at BTA14:25376827, explained 4.62% of the variance in BW EBVs. The surrounding 1 Mb region presented high identity with human, pig and mouse autosomes 8, 4 and 4, respectively, and contains the orthologous height genes PLAG1, CHCHD7, MOS, RPS20, LYN, RDHE2 (SDR16C5) and PENK. The region also overlapped 28 quantitative trait loci (QTLs) previously reported in literature by linkage mapping studies in cattle, including QTLs for birth weight, mature height, carcass weight, stature, pre-weaning average daily gain, calving ease, and gestation length.Conclusions: This study presents the first GWAS applying a high-density SNP panel to identify putative chromosome regions affecting birth weight in Nellore cattle. These results suggest that the QTLs on BTA14 associated with body size in taurine cattle (Bos primigenius taurus) also affect birth weight and size in zebu cattle (Bos primigenius indicus). © 2013 Utsunomiya et al.; licensee BioMed Central Ltd.
Resumo:
The objective of this study was to estimate genetic parameters for female mature weight (FMW), age at first calving (AFC), weight gain from birth to 120 days (WG_B_120), from 210 to 365 days (WG_210_365), rib eye area (REA), back fat thickness (BF), rump fat (RF) and body weight at scanning date (BWS) using single and multiple-trait animal models by the REML method from Nellore cattle data. The estimates of heritability ranged from 0.163±0.011 for WG_210_365 to 0.309±0.028 for RF using the single-trait model and from 0.163±0.010 for WG_210_365 to 0.382±0.025 for BWS using the multiple-trait model. The estimates of genetic correlations ranged from -0.35±0.08 between AFC with BF to 0.69±0.04 between WG_B_120 with BWS. Selection for weights gains, REA, and BWS can improve FMW. © 2013 Elsevier B.V.
Resumo:
Phenotypic data from female Canchim beef cattle were used to obtain estimates of genetic parameters for reproduction and growth traits using a linear animal mixed model. In addition, relationships among animal estimated breeding values (EBVs) for these traits were explored using principal component analysis. The traits studied in female Canchim cattle were age at first calving (AFC), age at second calving (ASC), calving interval (CI), and bodyweight at 420 days of age (BW420). The heritability estimates for AFC, ASC, CI and BW420 were 0.03±0.01, 0.07±0.01, 0.06±0.02, and 0.24±0.02, respectively. The genetic correlations for AFC with ASC, AFC with CI, AFC with BW420, ASC with CI, ASC with BW420, and CI with BW420 were 0.87±0.07, 0.23±0.02, -0.15±0.01, 0.67±0.13, -0.07±0.13, and 0.02±0.14, respectively. Standardised EBVs for AFC, ASC and CI exhibited a high association with the first principal component, whereas the standardised EBV for BW420 was closely associated with the second principal component. The heritability estimates for AFC, ASC and CI suggest that these traits would respond slowly to selection. However, selection response could be enhanced by constructing selection indices based on the principal components. © CSIRO 2013.
Resumo:
The gene responsible for coding the leptin hormone has been associated with productive and reproductive traits in cattle. In dairy cattle, different polymorphisms found in the leptin gene have been associated with several traits of economic interest, such as energy balance, milk yield and composition, live weight, fertility and dry matter consumption. The aim of this study was to detect genetic variability in the leptin gene of buffaloes and to test possible associations with milk yield, fat and protein percentages, age at first calving and first calving interval. Three genotypes (AA, AG and GG) were identified by polymerase chain reaction-restriction fragment length polymorphism, which presented genotypic frequencies of 0.30, 0.54 and 0.16, respectively. The allele frequencies were 0.57 for the A allele and 0.43 for the G allele. No significant effects were found in the present study, but there is an indicative that leptin gene affects lipid metabolism. © 2013 Springer Science+Business Media Dordrecht.
Resumo:
In this study, genetic parameters for test-day milk, fat, and protein yield were estimated for the first lactation. The data analyzed consisted of 1,433 first lactations of Murrah buffaloes, daughters of 113 sires from 12 herds in the state of São Paulo, Brazil, with calvings from 1985 to 2007. Ten-month classes of lactation days were considered for the test-day yields. The (co)variance components for the 3 traits were estimated using the regression analyses by Bayesian inference applying an animal model by Gibbs sampling. The contemporary groups were defined as herd-year-month of the test day. In the model, the random effects were additive genetic, permanent environment, and residual. The fixed effects were contemporary group and number of milkings (1 or 2), the linear and quadratic effects of the covariable age of the buffalo at calving, as well as the mean lactation curve of the population, which was modeled by orthogonal Legendre polynomials of fourth order. The random effects for the traits studied were modeled by Legendre polynomials of third and fourth order for additive genetic and permanent environment, respectively, the residual variances were modeled considering 4 residual classes. The heritability estimates for the traits were moderate (from 0.21-0.38), with higher estimates in the intermediate lactation phase. The genetic correlation estimates within and among the traits varied from 0.05 to 0.99. The results indicate that the selection for any trait test day will result in an indirect genetic gain for milk, fat, and protein yield in all periods of the lactation curve. The accuracy associated with estimated breeding values obtained using multi-trait random regression was slightly higher (around 8%) compared with single-trait random regression. This difference may be because to the greater amount of information available per animal. © 2013 American Dairy Science Association.
Resumo:
The objectives of the present study were to estimate genetic parameters of monthly test-day milk yield (TDMY) of the first lactation of Brazilian Holstein cows using random regression (RR), and to compare the genetic gains for milk production and persistency, derived from RR models, using eigenvector indices and selection indices that did not consider eigenvectors. The data set contained monthly TDMY of 3,543 first lactations of Brazilian Holstein cows calving between 1994 and 2011. The RR model included the fixed effect of the contemporary group (herd-month-year of test days), the covariate calving age (linear and quadratic effects), and a fourth-order regression on Legendre orthogonal polynomials of days in milk (DIM) to model the population-based mean curve. Additive genetic and nongenetic animal effects were fit as RR with 4 classes of residual variance random effect. Eigenvector indices based on the additive genetic RR covariance matrix were used to evaluate the genetic gains of milk yield and persistency compared with the traditional selection index (selection index based on breeding values of milk yield until 305 DIM). The heritability estimates for monthly TDMY ranged from 0.12 ± 0.04 to 0.31 ± 0.04. The estimates of additive genetic and nongenetic animal effects correlation were close to 1 at adjacent monthly TDMY, with a tendency to diminish as the time between DIM classes increased. The first eigenvector was related to the increase of the genetic response of the milk yield and the second eigenvector was related to the increase of the genetic gains of the persistency but it contributed to decrease the genetic gains for total milk yield. Therefore, using this eigenvector to improve persistency will not contribute to change the shape of genetic curve pattern. If the breeding goal is to improve milk production and persistency, complete sequential eigenvector indices (selection indices composite with all eigenvectors) could be used with higher economic values for persistency. However, if the breeding goal is to improve only milk yield, the traditional selection index is indicated. © 2013 American Dairy Science Association.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)