330 resultados para COATED IMPLANTS
Resumo:
The purpose of this implant study was to evaluate the transverse stability of the basal maxillary and mandibular structures. The sample included 25 subjects between 12 and 18 years of age who were followed for approximately 2.6 years. Metallic implants were placed bilaterally into the maxillary and mandibular corpora before treatment. Once implant stability had been confirmed, treatment (4 first premolar extractions followed by fixed appliance therapy) was initiated. Changes in the transverse maxillary and mandibular implants were evaluated cephalometrically and two groups (GROW+ and GROW++; selection based on growth changes in facial height and mandibular length) were compared. The GROW++ group showed significant width increases of the posterior maxillary implants (P <.001) and the mandibular implants (P =.009); there was no significant change for the anterior maxillary implants. The GROW+ group showed no significant width changes between the maxillary and mandibular implants. We conclude that (1) there are significant width increases during late adolescence of the basal mandibular and maxillary skeletal structures and (2) the width changes are related with growth potential.
Hydroxylapatite implants with or without collagen in the zygomatic arch of rats. Histological study.
Resumo:
The authors studied the behavior of calcium phosphate materials used as inlay implants into bone cavities prepared in the zygomatic arch of rats. Fifty male albino rats were divided into four groups as follows: group I-preparation of bone cavities which did not receive any implant material as controls; group II-implants of Interpore 200; group III-implants of experimental hydroxylapatite; group IV-implants of experimental hydroxylapatite combined with collagen. The animals were sacrificed after 5, 15, 30, 60 and 120 days and the specimens were submitted to histological analysis. Results showed that the experimental hydroxylapatite used in group III presented better osteogenic properties compared to the other materials. All tested materials were biocompatible, although group IV presented a more intense inflammatory response.
Resumo:
The aim of this literature review is to discuss the use of dental implants in growing patients and the influence of maxillary and mandibular skeletal and dental growth on the stability of those implants. It is recommended to wait for the completion of dental and skeletal growth, except for severe cases of ectodermal dysplasia.
Resumo:
The commercial pure titanium (cp-Ti) is currently being used with great success in dental implants. In this work we investigate how the cp-Ti implants can be improved by modifying the metal surface morphology, on which a synthetic material with properties similar to that of the inorganic part of the bone, is deposited to facilitate the bone/implant bonding. This synthetic material is the hydroxyapatite, HA, a calcium-phosphate ceramic. The surface modification consists in the application of a titanium oxide (TiO2) layer, using the thermal aspersion - plasma spray technique, with posterior deposition of HA, using the biomimetic method. The X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray (EDX) and Diffuse Reflectance Infrared Fourier Transform (DRIFT) techniques have been used for characterizing phases, microstructures and morphologies of the coatings. The TiO2 deposit shows a mixture of anatase, rutilo and TiO2-x phases, and a porous and laminar morphology, which facilitate the HA deposition. After the thermal treatment, the previously amorphous structured HA coating, shows a porous homogeneous morphology with particle size of about 2-2.5 μm, with crystallinity and composition similar to that of the biological HA.
Resumo:
The oral rehabilitation by dental implants in patients with diabetes remains a controversial issue. The aim of this study was to evaluate the influence of diabetes mellitus and insulin therapy on the bone healing around dental implants using torque removal. Twenty-seven rabbits were randomly divided into 3 groups with 9 animals each: control (C) group, induced diabetic (D) group, and insulin-treated diabetic (ITD) group (10 U/day). After 1 week, one implant was inserted at the tibial metaphysis of the animals. The glucose levels were periodically evaluated through the glucose-oxidase enzymatic method. The animals were killed at 4, 8, and 12 weeks after surgery and the biomechanical test was performed using a torque manometer. Statistically significant differences regarding the removal torque of the implant could not be found at 4 weeks (P = 0.2) among groups. Group C showed statistically higher values than groups D and ITD at the experimental periods of 8 (P = 0.0001 and P = 0.0002, respectively) and 12 weeks (P = 0.0053 and P = 0.001, respectively). There were no statistical differences between D and ITD groups in any of the experimental periods. Diabetes mellitus has negatively influenced the mechanical retention of implants placed at the tibial metaphysis of rabbits. Therapy with insulin did not induce any changes.
Resumo:
Purpose: Tissue reactions to 4 different implant surfaces were evaluated in regard to the development and progression of ligature-induced peri-implantitis. Materials and Methods: In 6 male mongrel dogs, a total of 36 dental implants with different surfaces (9 titanium plasma-sprayed, 9 hydroxyapatite-coated, 9 acid-etched, and 9 commercially pure titanium) were placed 3 months after mandibular premolar extraction. After 3 months with optimal plaque control, abutment connection was performed. Forty-five days later, cotton ligatures were placed around the implants to induce peri-implantitis. At baseline and 20, 40, and 60 days after placement, the presence of plaque, peri-implant mucosal redness, bleeding on probing, probing depth, clinical attachment loss, mobility, vertical bone loss, and horizontal bone loss were assessed. Results: The results did not show significant differences among the surfaces for any parameter during the study (P > .05). All surfaces were equally susceptible to ligature-induced peri-implantitis over time (P < .001). Correlation analysis revealed a statistically significant relationship between width of keratinized tissue and vertical bone loss (r 2 = 0.81; P = .014) and between mobility and vertical bone loss (r 2 = 0.66; P = .04), both for the titanium plasma-sprayed surface. Discussion and Conclusions: The present data suggest that all surfaces were equally susceptible to experimental peri-implantitis after a 60-day period.
Resumo:
The accuracy of impressions that transfer the relationship of the implant to the metal framework of the prosthesis continues to be a problem. This study was designed to evaluate the accuracy of the transfer process under variable conditions with regard to implant analog angulations, impression materials, and techniques. Replicas (n = 60) of a metal matrix (control) containing four implants at 90°, 80°, 75°, and 65° in relation to the horizontal surface were obtained by using three impression techniques: T1 - indirect technique with conical copings in closed trays; T2 - direct technique with square copings in open trays; and T3 - square copings splinted with autopolymerizing acrylic resin; and four elastomers: P-polysulfide; I-polyether; A-addition silicone; and Z-condensation silicone. The values of the implant analog annulations were assessed by a profilometer to the nearest 0.017°, then submitted to analysis of variance for comparisons at significance of 5% (P < .05). For implant analog at 90°, the material A associated with T2 and material Z with T3 behaved differently (P < .05) from all groups. At 80°, all materials behaved differently (P < .01) with T1. At 75°, when T1 was associated, materials P and A showed similar behavior, as well as materials I and Z; however, P and A were different from I and Z (P < .01). When T3 was associated, all experimental groups behaved differently among them (P < .01). At 65°, the materials P and Z behaved differently (P < .01) from the control group with T1, T2, and T3; the materials I and A behaved differently from the control group (P < .01) when T1 and T2, respectively, were associated. The more perpendicular the implant analog annulation is in relation to the horizontal surface, the more accurate the impression. The best materials were material I and A and the most satisfactory technique was technique 3.
Resumo:
Single nucleotide polymorphisms in the promoter region of the human interleukin (IL)-2 (T-330G) and IL-6 (G-174C) genes have modified the transcriptional activity of these cytokines and are associated with several diseases. The aim of this study was to investigate the possible relationship between these single nucleotide polymorphisms and early implant failure. A sample of 74 nonsmokers was divided into 2 groups: test group comprising 34 patients (mean age 49.3 years) with ĝ‰¥1 implants that failed and control group consisting of 40 patients (mean age 43.8 years) with ĝ‰¥1 healthy implants. Genomic deoxyribonucleic acid from oral mucosa was amplified by polymerase chain reaction and analyzed by restriction fragment length polymorphism. Monte Carlo simulations (P < 0.05) were used to assess differences in allele and genotypes frequencies of the single nucleotide polymorphisms between the 2 groups. No significant differences were observed in the allele and genotypes distribution of both polymorphisms when the 2 groups were compared. The results indicate that polymorphisms in the IL-2 (T-330G) and IL-6 (G-174C) genes are not associated with early implant failure, suggesting that the presence of those single nucleotide polymorphisms does not constitute a genetic risk factor for implant loss in the studied population. Copyright © 2005 by Lippincott Williams & Wilkins.
Resumo:
The protection efficiency against water corrosion of fluorozirconate glass, ZBLAN, dip-coated by nanocrystalline tin oxide film containing the organic molecule Tiron® was investigated by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The chemical bonding structure of the surface region and morphology were studied before and after two water exposure periods of 5 and 30 min. The results of the analysis for the as-grown sample revealed a SnO1.6 phase containing carbon and sulfur, related to Tiron®, and traces of elements related to ZBLAN (Zr, F, Ba). This fact and the clear evidence of the presence of tin oxifluoride specie (SnOxF y) indicates a diffusion of the glass components into the porous coating. After water exposure, the increase of the oxygen concentration accompanied by a strong increase of Zr, F, Ba and Na content is interpreted as filling of the nanopores of the film by glass compounds. The formation of a compact protective layer is supported by the morphological changes observed by AFM. © 2005 Elsevier B.V. All rights reserved.
Resumo:
Purpose: This study compared the microtensile bond strength of resin-based cement (Panavia F) to silica-coated, silanized, glass-infiltrated high-alumina zirconia (In-Ceram Zirconia) ceramic in dry conditions and after various aging regimens. Materials and Methods: The specimens were placed in 1 of 4 groups: group 1: dry conditions (immediate testing without aging); group 2: water storage at 37°C for 150 days; group 3: 150 days of water storage followed by thermocycling (× 12,000, 5°C to 55°C); group 4: water storage for 300 days; group 5: water storage for 300 days followed by thermocycling. Results: Group 1 showed a significantly higher microtensile bond strength value (26.2 ± 1 MPa) than the other aging regimens (6.5 ± 1, 6.2 ± 2, 4.5 ± 1, 4.3 ± 1 MPa for groups 2, 3, 4, and 5, respectively) (P < .01). Conclusion: Satisfactory results were seen in dry conditions, but water storage and thermocycling resulted in significantly weaker bonds between the resin cement and the zirconia.
Resumo:
The purpose of this study was to evaluate in vivo the biocompatibility of Endométhasone, Pulp Canal Sealer EWT and AHPlus root canal sealers after implantation in rat connective tissue. Twenty-four Wistar-Furth rats were used. Polyethylene tubes were filled with the sealers and implanted into specific dorsal subdermal tissue sites of the rats. Implants were removed after 3, 7 and 30 days, fixed and processed for glycol methacrylate-embedding technique to be examined microscopically. On the 3rd day, there was a mild inflammatory reaction to Pulp Canal Sealer EWT implants, but a severe response to the other sealers with presence of acute inflammatory cells. On the 7th day, tissue organization was more evident with attenuation of the inflammatory reaction, especially for the AH-Plus implants. On the 30th day, connective tissue with few inflammatory cells was observed in contact with all sealer implants. In this time interval, the tissue in contact with Pulp Canal Sealer EWT implants was more organized, while the tissue close to Endométhasone and AH-Plus implants showed a mild persistent inflammatory reaction and had similar results to each other. In conclusion, the sealers had a similar pattern of irritation, which was more severe in the beginning and milder with time, in such a way that all sealers showed a persistent mild reaction. Pulp Canal Sealer EWT yielded better tissue organization than Endométhasone and AH-Plus, which, in turn, showed similar results to each other.
Resumo:
The aim of this study was to assess the influence of a fluoridated medium on the mechanical properties of an internal hexagon implant-abutment set, by means of compression, mechanical cycling and metallographic characterization by scanning electronic microscopy. Five years of regular use of oral hygiene with a sodium fluoride solution content of 1500 ppm were simulated, immersing the samples in this medium for 184 hours, with the solutions being changed every 12 hours. Data were analyzed at a 95% confidence level with Fisher's exact test. After the action of fluoride ions, a negative influence occurred in the mechanical cycling test performed in a servohydraulic machine (Material Test System-810) set to a frequency of 15 Hz with 100,000 cycles and programmed to 60% of the maximum resistance of static compression test. The sets tended to fracture by compression on the screw, characterized by mixed ruptures with predominance of fragile fracture, as observed by microscopy. An evidence of corrosion by pitting on sample surfaces was found after the fluoride ions action. It may be concluded that prolonged contact with fluoride ions is harmful to the mechanical properties of commercially pure titanium structures.
Resumo:
The aim of this investigation was to accomplish an overview about the principles of the indication and of the success parameters involving immediate and delayed loading dental implants procedures. Studies about the philosophies (immediate and delayed loading dental implants) and their clinical indications will be discussed in order to overview the rules for the clinical success in both techniques. In addition, studies regarding the criteria for immediate loading implants as primary stabilization, surface treatments and bone density and amount will be also analyzed. More important than the philosophy selection, is how and when to use it according to biomechanical rules and principles. Among the vast limitations pointed by the literature regarding procedures of immediate and delayed loading are evidenced the parafunctional habits, primary stabilization, bone quality, surface treatments and the number of dental implants. The anterior region of the jaw seems to be associated with a major percentage of satisfactory results, regardless of rehabilitation procedures. Although several studies have demonstrated high success rates for the immediate loading dental implants, several aspects remain without an explicit definition and further studies are needed to elucidate some reservations.
Resumo:
PURPOSE
Resumo:
This study sought to investigate the surface roughness and the adherence of Streptococcus mutans (in the presence and absence of saliva) to ceramics and composites. The early dental biofilms formed in situ on the materials were illustrated, using scanning electron microscopy (SEM). Feldspathic and leucite/feldspathic ceramics and microhybrid and microfilled composites were evaluated. Human dental enamel was used as the control. Standardized specimens of the materials were produced and surface roughness was analyzed. The adhesion tests were carried out in 24-well plates and colony forming units (CFU/mL) were evaluated. Values of roughness (μm) and adherence (CFU/mL) were analyzed statistically. Of all the surfaces tested, enamel was the roughest. Leucite/feldspathic ceramics were rougher than the feldspathic ceramic, while composites were similar statistically. Enamel offered the highest level of adherence to uncoated and saliva-coated specimens, while the leucite/feldspathic ceramic demonstrated greater adherence than the feldspathic ceramic and the composites were similar statically. The rougher restorative materials increased the adherence of S, mutans on the material surfaces.