228 resultados para Bothrops moojeni
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
As serpentes peçonhentas dos gêneros Bothrops e Crotalus têm sido mantidas em cativeiro visando à extração de venenos para a produção de imunobiológicos. O conhecimento da fisiologia desses animais e as alterações na concentração de proteínas e suas frações séricas são importantes para a identificação precoce de importantes enfermidades que cursam com estados de hipoproteinemia e hiperproteinemia. O objetivo do trabalho foi determinar a concentração de proteína total e o perfil eletroforético das proteínas séricas de serpentes Crotalus durissus terrificus (cascavel) criadas em cativeiro. Foram colhidas amostras de sangue da veia coccígea ventral de 21 serpentes adultas e sadias, divididas em dois grupos: Grupo 1 de 12 machos com peso médio de 588,89±193,55g, e Grupo 2 de nove fêmeas com peso médio de 708,33±194,04g. A proteína total sérica foi determinada pelo método de refratometria e a eletroforese em gel de agarose. Obtiveram-se valores da proteína total sérica (g/dL) de 4,51±0,50 para machos e de 4,82±0,72 para fêmeas, e para machos e fêmeas de 4,64±0,61. Foram identificadas pela eletroforese quatro frações protéicas (g/dL): albumina, a, b, g-globulinas e calculada a relação albumina:globulina. As serpentes fêmeas apresentaram maiores valores para as variáveis, albumina e para a relação albumina/globulina (AG) diferindo significativamente (P<0,05) do grupo de machos, porém sem significado clínico.
Resumo:
In the present study, snakebites caused by a single Bothrops pauloensis simultaneously affecting three male adult horses are described. Whereas the first two affected horses were six years old, the third was 16 years old; they weighed respectively 555, 550 and 500 kg. All horses presented swollen muzzles. The first animal received an initial antivenom dose of 19 vials and adjuvant medication, it was also subjected to tracheostomy due to the progression of acute respiratory failure. The second and third horses respectively received 15 vials of antivenom each, in addition to adjuvant medication. Due to continuous changes in blood coagulation observed during hospitalization, the first and the second horses received five more vials of antivenom, respectively, in the second and third days of treatment. The first animal was discharged on 15(th) day and the other on the 8(th) day of hospitalization. Several factors including the main actions of Bothrops venom (coagulation, proteolytic and vasculotoxic activities), the importance of early diagnosis based on clinical history and clinical examination suggesting the diagnosis of Bothrops snakebite, the adequate doses of antivenom, and finally the immediate tracheostomy are herein discussed. The tracheostomy, required to save the life of the first horse, should only occur after the administration of antivenom and control measures for changes in blood coagulation.
Resumo:
As a first step to investigate the structure-function relationship of bothropstoxin-1 (BthTX-1), a myotoxin from Bothrops jararacussu snake venom, Our group previously cloned a recombinant toxin (rBthTX-1) in Escherichia coli. The aim or this work was to characterize the biological activities of this rBthTX-1 (1.0 mu M) in both phrenic-diaphragm and extensor digitorum longus preparations in vitro, by means of myographic and morphologic techniques. Native BthTX-1 (1.0 mu M) was used as a standard. The influence of heparin (27.5 mu g/ml) upon the biological activities of both toxins was also investigated. rBthTX-1 had similar effects to the native toxin inducing blockage of both directly and indirectly evoked contractions in phrenic-diaphragm preparations, and muscle damage characterized by edema, round fibers, and cell areas devoid of myofibrils. Interestingly the paralyzing activity of rBthTX-1 was slightly more potent than the native toxin. Heparin prevented paralyzing and myotoxic effects of both the native and recombinant toxins. This work shows that rBthTX-1 was expressed in a fully active form, and presents a biological profile similar to the native toxin. (c) 2005 Elsevier GmbH All rights reserved.
Resumo:
Polyanionic substances are known to inhibit the myotoxic effects of some crotalide snake venoms. Bothropstoxin-I (BthTX-I), a basic Lys49 phospholipase (PLA(2)) homologue from Bothrops jararacussu venom, besides inducing muscle damage, also promotes the blockade of both directly and indirectly evoked contractions in mouse neuromuscular preparation. In this work, we evaluated the ability of suramin, a polysulfonated naphtylurea derivative, to antagonize the myotoxic and the paralyzing activities of BthTX-I on mice neuromuscular junction in vitro. Myotoxicity was assessed by light and electronic microscopic analysis of extensor digitorum longus (EDL) muscles; paralyzing activity was evaluated through the recording of both directly and indirectly evoked contractions of phrenic-diaphragm (PD) preparations. BthTX-I (1 muM) alone, or pre-incubated with suramin (10 muM) at 37degreesC for 15 min was added to the preparations for 120 min. BthTX-I induced histological alterations typical of myonecrosis in 14.6 +/- 1.0% of EDL muscle fibers. In addition, BthTX-I blocked 50% of both directly and indirectly evoked contractions in PD preparations in 72.1 +/- 9.1 and 21.1 +/- 2.0 min, respectively. Pre-incubation with suramin abolished both the muscle-damaging and muscle-paralyzing activities of BthTX-I. Since suramin is a polyanionic substance, we suggested that its effects result from the formation of inactive acid-base complexes with BthTX-I. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
An acidic phospholipase A(2) (PLA(2)) isolated from Bothrops jararacussu snake venom was crystallized with two inhibitors: alpha-tocopherol (vitamin E) and p-bromophenacyl bromide (BPB). The crystals diffracted at 1.45- and 1.85-Angstrom resolution, respectively, for the complexes with alpha-tocopherol and p-bromophenacyl bromide. The crystals are not isomorphous with those of the native protein, suggesting the inhibitors binding was successful and changes in the quaternary structure may have occurred. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Many plants are used in traditional medicine as active agents against various effects induced by snakebite. The methanolic extract from Cordia verbenacea (Cv) significantly inhibited paw edema induced by Bothrops jararacussu snake venom and by its main basic phospholipase A(2) homologs, namely bothropstoxins I and II (BthTXs). The active component was isolated by chromatography on Sephadex LH-20 and by RP-HPLC on a C18 column and identified as rosmarinic acid (Cv-RA). Rosmarinic acid is an ester of caffeic acid and 3,4-dihydroxyphenyllactic acid [2-O-cafeoil-3-(3,4-di-hydroxy-phenyl)-R-lactic acid]. This is the first report of RA in the species C. verbenacea ('baleeira', 'whaler') and of its anti-inflammatory and antimyotoxic properties against snake venoms and isolated toxins. RA inhibited the edema and myotoxic activity induced by the basic PLA(2)s BthTX-I and BthTX-II. It was, however, less efficient to inhibit the PLA(2) activity of BthTX-II and, still less, the PLA(2) and edema-inducing activities of the acidic isoform BthA-1-PLA(2), from the same venom, showing therefore a higher inhibitory activity upon basic PLA(2)s. RA also inhibited most of the myotoxic and partially the edema-inducing effects of both basic PLA(2)s, thus reinforcing the idea of dissociation between the catalytic and pharmacological domains. The pure compound potentiated the ability of the commercial equine polyvalent antivenom in neutralizing lethal and myotoxic effects of the crude venom and of isolated PLA(2)s in experimental models. CD data presented here suggest that, after binding, no significant conformation changes occur either in the Cv-RA or in the target PLA(2). A possible model for the interaction of rosmarinic acid with Lys49-PLA(2) BthTX-I is proposed. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The crystal structure of an acidic phospholipase A(2) isolated from Bothrops jararacussu venom (BthA-I) chemically modified with p-bromophenacyl bromide (BPB) has been determined at 1.85 angstrom resolution. The catalytic, platelet-aggregation inhibition, anticoagulant and hypotensive activities of BthA-I are abolished by ligand binding. Electron-density maps permitted unambiguous identification of inhibitor covalently bound to His48 in the substrate-binding cleft. The BthA-I-BPB complex contains three structural regions that are modified after inhibitor binding: the Ca2+-binding loop, ss-wing and C-terminal regions. Comparison of BthA-I-BPB with two other BPB-inhibited PLA(2) structures suggests that in the absence of Na+ ions at the Ca2+- binding loop, this loop and other regions of the PLA(2)s undergo structural changes. The BthA-I-BPB structure reveals a novel oligomeric conformation. This conformation is more energetically and conformationally stable than the native structure and the abolition of pharmacological activities by the ligand may be related to the oligomeric structural changes. A residue of the `pancreatic' loop (Lys69), which is usually attributed as providing the anticoagulant effect, is in the dimeric interface of BthA-I-BPB, leading to a new hypothesis regarding the abolition of this activity by BPB.
Resumo:
BnSP-7 and BnSP-6, two Lys49-phospholipase A(2) isolated from Bothrops neuwiedi pauloensis snake venom, were co-crystallized with a-tocopherol and X-ray diffraction data were collected for both complexes (2.2 and 2.6 angstrom). A new alternative quaternary conformation for these two complexes compared with all other dimeric Lys49-PLA(2) has been observed.
Resumo:
Phospholipases A(2) are components of Bothrops venoms responsible for disruption of cell membrane integrity via hydrolysis of its phospholipids. A class of PLA(2)-like proteins has been described which despite PLA(2) activity on artificial substrate, due to a D49K mutation, is still highly myonecrotic. This work reports the X-ray structure determination of two Lys49-PLA(2)s from Bothrops neuwiedi pauloensis (BnSP-7 and BnSP-6) and, for the first time, the comparison of eight dimeric Lys49-PLA2s. This comparison reveals that there are not just two (open and closed) but at least six different conformations. The binding of fatty acid observed in three recent Lys49-PLA(2) structures seems to be independent of their quaternary conformation. Cys29 polarization by Lys122 is not significant for BnSP-7 and BnSP-6 or other structures not bound by fatty acids. These structures may be in an active state when nothing is bound to them and the Lys122/Cys29 interactions are weak or absent. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Phospholipases A(2) belong to the superfamily of proteins which hydrolyzes the sn-2 acyl groups of membrane phospholipids to release arachidonic acid and lysophospholipids. An acidic phospholipase A(2) isolated from Bothrops juraracussu snake venom presents a high catalytic, platelet aggregation inhibition and hypotensive activities. This protein was crystallized in two oligomeric states: monomeric and dimeric. The crystal structures were solved at 1.79 and 1.90 Angstrom resolution, respectively, for the two states. It was identified a Na+ ion at the center of Ca2+-binding site of the monomeric form. A novel dimeric conformation with the active sites exposed to the solvent was observed. Conformational states of the molecule may be due to the physicochemical conditions used in the crystallization experiments. We suggest dimeric state is one found in vivo. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A myotoxic Asp49-phospholipase A(2) (Asp49-PLA(2)) with low catalytic activity (BthTX-II from Bothrops jararacussu venom) was crystallized and the molecular-replacement solution has been obtained with a dimer in the asymmetric unit. The quaternary structure of BthTX-II resembles the myotoxic Asp49-PLA2 PrTX-III (piratoxin III from B. pirajai venom) and all non-catalytic and myotoxic dimeric Lys49-PLA(2)s. Despite of this, BthTX-II is different from the highly catalytic and non-myotoxic BthA-I (acidic PLA(2) from B. jararacussu) and other Asp49-PLA(2)s. BthTX-II structure showed a severe distortion of calcium-binding loop leading to displacement of the C-terminal region. Tyr28 side chain, present in this region, is in an opposite position in relation to the same residue in the catalytic activity Asp49-PLA(2)s, making a hydrogen bond with the atom 0 delta 2 of the catalytically active Asp49, which should coordinate the calcium. This high distortion may also be confirmed by the inability of BthTX-II to bind Na+ ions at the Ca2+-binding loop, despite of the crystallization to have occurred in the presence of this ion. In contrast, other Asp49-PLA(2)s which are able to bind Ca2+ ions are also able to bind Na+ ions at this loop. The comparison with other catalytic, non-catalytic and inhibited PLA(2)s indicates that the BthTX-II is not able to bind calcium ions; consequently, we suggest that its low catalytic function is based on an alternative way compared with other PLA(2)s. (c) 2008 Elsevier B.V All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)