256 resultados para Bone implants
Resumo:
Aim: The first aim of the present experiment was to compare bone healing at implants installed in recipient sites prepared with conventional drills or a piezoelectric device. The second aim was to compare implant osseointegration onto surfaces with and without dendrimers coatings. Material and Methods: Six Beagles dogs were used in this study. Five implants with two different surfaces, three with a ZirTi® surface (zirconia sand blasted, acid etched), and two with a ZirTi®-modified surface with dendrimers of phosphoserine and polylysine were installed in the right side of the mandible. In the most anterior region (P2, P3), two recipient sites were prepared with drills, and one implant ZirTi® surface and one coated with dendrimers implants were installed at random. In the posterior region (P4 and M1), three recipient sites were randomly prepared: two sites with a Piezosurgery® instrument and one site with drill and two ZirTi® surface and one coated with dendrimers implants installed. Three months after the surgery, the animals were sacrificed for histological analysis. Results: No complications occurred during the healing period. Three implants were found not integrated and were excluded from analysis. However, n = 6 was obtained. The distance IS-B at the buccal aspect was 2.2 ± 0.8 and 1.8 ± 0.5 mm, while IS-C was 1.5 ± 0.9 and 1.4 ± 0.6 mm at the Piezosurgery® and drill groups, respectively. Similar values were obtained between the dendrimers-coated and ZirTi® surface implants. The BIC% values were higher at the drill (72%) compared to the Piezosurgery® (67%) sites. The BIC% were also found to be higher at the ZirTi® (74%) compared to the dendrimers-coated (65%) implants, the difference being statistically significant. Conclusion: This study has revealed that oral implants may osseointegrate equally well irrespective of whether their bed was prepared utilizing conventional drills with abundant cooling or Piezosurgery®. Moreover, the surface coating of implants with dendrimers phosphoserine and polylysine did not improve osseointegration. © 2012 John Wiley & Sons A/S.
Resumo:
This study investigated the effect of an Argon-based nonthermal plasma (NTP) surface treatment-operated chairside at atmospheric pressure conditions applied immediately prior to dental implant placement in a canine model. Surfaces investigated comprised: Calcium-Phosphate (CaP) and CaP + NTP (CaP-Plasma). Surface energy was characterized by the Owens-Wendt-Rabel-Kaelble method and chemistry by X-ray photoelectron spectroscopy (XPS). Six adult beagles dogs received 2 plateau-root form implants (n = 1 each surface) in each radii, providing implants that remained 1 and 3 weeks in vivo. Histometric parameters assessed were bone-to-implant contact (BIC) and bone area fraction occupancy (BAFO). Statistical analysis was performed by Kruskall-Wallis (95% level of significance) and Dunn's post-hoc test. The XPS analysis showed peaks of Ca, C, O, and P for the CaP and CaP-Plasma surfaces. Both surfaces presented carbon primarily as hydro-carbon (CAC, CAH) with lower levels of oxidized carbon forms. The CaP surface presented atomic percent values of 38, 42, 11, and 7 for C, O, Ca, and P, respectively, and the CaPPlasma presented increases in O, Ca, and P atomic percent levels at 53, 12, and 13, respectively, in addition to a decrease in C content at 18 atomic percent. At 1 week no difference was found in histometric parameters between groups. At 3 weeks significantly higher BIC and BAFO were observed for CaPPlasma treated surfaces. Surface elemental chemistry was modified by the Ar-based NTP. Ar-based NTP improved bone formation around plateau-root form implants at 3 weeks compared with CaP treatment alone. © 2012 Wiley Periodicals, Inc.
Resumo:
The purpose of this study was to evaluate commercially pure titanium implant surfaces modified by laser beam (LS) and LS associated with sodium silicate (SS) deposition, and compare them with machined surface (MS) and dual acid-etching surfaces (AS) modified. Topographic characterization was performed by scanning electron microscopy-X-ray energy dispersive spectroscopy (SEM-EDX), and by mean roughness measurement before surgery. Thirty rabbits received 60 implants in their right and left tibias. One implant of each surface in each tibia. The implants were removed by reverse torque for vivo biomechanical analysis at 30, 60, and 90 days postoperative. In addition, the surface of the implants removed at 30 days postoperative was analyzed by SEM-EDX. The topographic characterization showed differences between the analyzed surfaces, and the mean roughness values of LS and SS were statistically higher than AS and MS. At 30 days, values removal torque LS and SS groups showed a statistically significant difference (p < 0.05) when compared with MS and AS. At 60 days, groups LS and SS showed statistically significant difference (p < 0.05) when compared with MS. At 90 days, only group SS presented statistically higher (p < 0.05) in comparison with MS. The authors can conclude that physical chemistry properties and topographical of LS and SS implants increases bone-implant interaction and provides higher degree of osseointegration when compared with MS and AS. © 2012 Wiley Periodicals, Inc.
Resumo:
Low-level laser (LLL) has been used on peri-implant tissues for accelerating bone formation. However, the effect of one session of LLL in the strength of bone-implant interface during early healing process remains unclear. The present study aims to evaluate the removal torque of titanium implants irradiated with LLL during surgical preparation of implant bed, in comparison to non-irradiation. Sixty-four Wistar rats were used. Half of the animals were included in LLL group, while the other half remained as control. All animals had the tibia prepared with a 2 mm drill, and a titanium implant (2.2 × 4 mm) was inserted. Animals from LLL group were irradiated with laser (gallium aluminum arsenide), with a wavelength of 808 nm, a measured power output of 50 mW, to emit radiation in collimated beams (0.4 cm2), for 1 min and 23 s, and an energy density of 11 J/cm2. Two applications (22 J/cm 2) were performed immediately after bed preparation for implant installation. Flaps were sutured, and animals from both groups were sacrificed 7, 15, 30, and 45 days after implant installation, when load necessary for removing implant from bone was evaluated by using a torquimeter. In both groups, torque values tended to increase overtime; and at 30 and 45 days periods, values were statistically higher for LLL group in comparison to control (ANOVA test, p < 0.0001). Thus, it could be suggested that a single session of irradiation with LLL was beneficial to improve bone-implant interface strength, contributing to the osseointegration process. © 2012 Springer-Verlag London Ltd.
Resumo:
Aim: To evaluate the influence of deproteinized bovine bone mineral in conjunction with a collagen membrane, at implants installed into sockets in a lingual position immediately after tooth extraction, and presenting initial horizontal residual buccal defects <2 mm. Material and methods: The pulp tissue of the mesial roots of 4P4 was removed in six Labrador dogs, and the root canals were filled with gutta-percha and cement. Flaps were elevated, and the buccal and lingual alveolar bony plates were exposed. The premolars were hemi-sectioned, and the distal roots were removed. Implants were installed in a lingual position and with the margin flush with the buccal bony crest. After installation, defects resulted at about 1.7 mm in width at the buccal aspects, both at the test and control sites. Only in the left site (test), deproteinized bovine bone mineral (DBBM) particles were placed into the defect concomitantly with the placement of a collagen membrane. A non-submerged healing was allowed. Results: After 3 months of healing, one implant was found not integrated and was excluded from the analysis together with the contralateral control implant. All remaining implants were integrated into mature bone. The bony crest was located at the same level of the implant shoulder, both at the test and control sites. At the buccal aspect, the most coronal bone-to-implant contact was located at a similar distance from the implant margin at the test (1.7 ± 1.0 mm) and control (1.6 ± 0.8 mm) sites, respectively. Only small residual DBBM particles were found at the test sites. Conclusion: The placement of an implant in a lingual position into a socket immediately after tooth extraction may favor a low exposure of the buccal implant surface. The use of DBBM particles, concomitantly with a collagen membrane, did not additionally improve the outcome obtained at the control sites. © 2011 John Wiley & Sons A/S.
Resumo:
Aim: To evaluate the influence of a sub-epithelial connective tissue graft placed at the buccal aspect of implants installed immediately after tooth extraction on the dimensional changes of hard and soft tissues. Materials and Methods: In six Labrador dogs a bilateral partial- thickness dissection was made buccal to the second mandibular premolar. At the lingual aspect, full-thickness flaps were elevated. The teeth were extracted and implants installed immediately into the distal socket. A connective tissue graft was obtained from the palate and applied to the buccal aspect of the test sites, whereas contra-laterally, no graft was applied. The flaps were sutured to allow a non-submerged installation. After 4 months of healing, the animals were sacrificed, ground sections were obtained and histomorphometric analyses were performed. Results: After 4 months of healing, all implants were integrated (n = 6). Both at the test and at the control sites bone resorption occurred: 1.6 mm and 2.1 mm, respectively. The difference was not statistically significant. The coronal aspect of the peri-implant soft tissue was wider and located more coronally at the test compared with the control sites. The differences were statistically significant. Conclusions: The application of a connective tissue graft placed at the buccal aspect of the bony wall at implants installed immediately after tooth extraction yielded a minimal preservation of the hard tissues. The peri-implant mucosa, however, was significantly thicker and more coronally positioned at the test compared with the control sites. © 2012 John Wiley & Sons A/S.
Resumo:
Objectives: This study aimed to comparatively evaluate the in vitro osteogenic potential of cells obtained from the mandibular ramus (MR, autogenous bone donor site) and from the maxillary sinus (MS) bone grafted with a mixture of anorganic bovine bone (ABB) and MR prior to titanium implant placement (MS, grafted implant site). Material and methods: Cells were obtained from three patients subjected to MS floor augmentation with a 1: 1 mixture of ABB (GenOx Inorg®) and MR. At the time of the sinus lift procedure and after 8 months, prior to implant placement, bone fragments were taken from MR and MS, respectively, and subjected to trypsin-collagenase digestion for primary cell culturing. Subcultured cells were grown under osteogenic condition for up to 21 days and assayed for proliferation/viability, osteoblast marker mRNA levels, alkaline phosphatase (ALP) activity and calcium content/Alizarin red staining. ALP activity was also determined in primary explant cultures exposed to GenOx Inorg® (1: 1 with MR) for 7 days. Data were compared using either the Mann-Whitney U-test or the Kruskal-Wallis test. Results: MS cultures exhibited a significantly lower osteogenic potential compared with MR cultures, with a progressive increase in cell proliferation together with a decrease in osteoblast markers, reduced ALP activity and calcium content. Exposure of MR-derived primary cultures to GenOx Inorg® inhibited ALP activity. Conclusion: These results suggest that the use of GenOx Inorg® in combination with MR fragments for MS floor augmentation inhibits the osteoblast cell differentiation at the implant site in the long term. © 2013 John Wiley & Sons A/S.
Resumo:
Objectives: To compare autogenous bone (AT) and fresh-frozen allogeneic bone (AL) in terms of histomorphometrical graft incorporation and implant osseointegration after grafting for lateral ridge augmentation in humans. Materials and methods: Thirty-four patients were treated with either AL (20 patients) or AT (14 patients) onlay grafts. During implant installation surgery 6 months after grafting, cylindrical biopsies were harvested perpendicularly to the lateral aspect of the augmented alveolar ridge. Additionally, titanium mini-implants were installed in the grafted regions, also perpendicularly to the ridge; these were biopsied during second-stage surgery. Histological/histomorphometric analysis was performed using decalcified and non-decalcified sections. Results: Histological analysis revealed areas of necrotic bone (NcB) occasionally in contact with or completely engulfed by newly formed vital bone (VB) in both AT and AL groups (55.9 ± 27.6 vs. 43.1 ± 20.3, respectively; P = 0.19). Statistically significant larger amounts of VB (27.6 ± 17.5 vs. 8.4 ± 4.9, respectively; P = 0.0002) and less soft connective tissue (ST) (16.4 ± 15.6 vs. 48.4 ± 18.1, respectively; P ≤ 0.0001) were seen for AT compared with AL. No significant differences were observed between the groups regarding both bone-to-implant contact (BIC) and the bone area between implant threads (BA) on the mini-implant biopsies. Conclusion: Allogeneic bone block grafts may be an option in cases where a limited amount of augmentation is needed, and the future implant can be expected confined within the inner aspect of the bone block. However, the clinical impact of the relatively poor graft incorporation on the long-term performance of oral implants placed in AL grafts remains obscure. © 2013 John Wiley & Sons A/S.
Resumo:
Objectives: To evaluate dimensional changes in autologous (AT) and fresh-frozen allogeneic (AL) block bone grafts 6 months after alveolar ridge augmentation. Material and methods: Twenty-six partially or totally edentulous patients treated either with fresh-frozen AL bone or AT bone onlay block grafts prior to implant placement (13 patients in each group), were included in this analysis. Patients received CBCT (i-CAT Classic) examinations prior to surgery and 14 days and 6 months after grafting. Differences in alveolar ridge area among the various observation times were evaluated by planimetric measurements on two-dimensional CBCT images of the grafted regions. Nineteen grafted blocks from each group were evaluated. Results: Significant increase in alveolar ridge dimensions, allowing implant placement, was obtained with both types of grafts 6 months after grafting; no significant differences in alveolar ridge area were observed between the groups at the various observation times. However, graft resorption in the AL group was significantly larger compared to that in the AT group at 6 months. Conclusions: Larger bone graft resorption was seen in patients treated with fresh-frozen AL bone than in those treated with AT bone 6 months following alveolar ridge augmentation. © 2011 John Wiley & Sons A/S.
Resumo:
Objective: To compare immediate and staged approach implant placement in circumferential defects treated with deproteinized bovine bone mineral (DBBM); hidroxyapatite/tricalcium phosphate (HA/TP); autogenous bone (Ab); and coagulum (Cg); upon implant stability, osseointegration and alveolar crest maintenance. Materials and methods: Six dogs underwent extractions of lower premolars, bilaterally. Twelve weeks later four bone defects (6 mm wide/4 mm long) were drilled at one side and randomly filled with DBBM; HA/TP; Ab; and Cg, respectively, and left to heal (staged approach). Eight weeks later one implant (Osseospeed™, AstraTech) was placed in experimental sites. At the same session four defects were drilled on contra-lateral side and implants were inserted immediately after biomaterials grafting (immediate approach). Animals were euthanized 8 weeks later. Implant stability was measured by resonance frequency analysis (RFA) at installation and after sacrifice. Ground sections were prepared for bone contact (BIC); bone area (BA); distance implant shoulder-bone crest (IS-C); distance implant shoulder first bone contact (IS-B); and areas occupied by soft tissue. Results: The BA and BIC were superior in the staged approach. The Cg exhibited higher BIC and BA as compared with other materials at the total implant body (P = 0.004 and 0.012, respectively). The DBBM, HA/TP and Ab groups rendered similar BA and BIC. The immediate approach resulted in less crest resorption compared to staged approach. The biomaterials did not affect the IS-C and IS-B measurements. Particles area tended to be higher in DBBM group than HA/TP (P = 0.15), while soft tissue infiltrate was higher in DBBM group when used in the immediate approach (P = 0.04). The RFA indicated gain in stability in the staged approach (P = 0.002). The correlation test between RFA vs. BIC and BA demonstrated inferior stability for DBBM group in immediate approach (P = 0.01). Conclusions: Implants placed in healed defects resulted in better stability as a consequence of higher BIC and BA. The Cg alone rendered increased BIC compared to other materials in both approaches. Immediate approach should be preferable to staged approach in terms of alveolar crest maintenance. The BIC and BA values did not vary between micro and macro-threads in this experimental model. Implants installed in sites filled with DBBM in immediate approach were less stable. © 2011 John Wiley & Sons A/S.
Resumo:
To evaluate the bone healing of defects filled with particulate bone graft in combination with platelet-rich plasma (PRP), added with a mixture of calcium chloride and thrombin or just calcium chloride. Two 5-mm bone defects were created in the calvaria of 24 rabbits. Each defect was filled with particulate bone graft and PRP. In one defect the PRP was activated by a mixture of calcium chloride and thrombin; in the other, PRP was activated by calcium chloride only. The animals were euthanized 1, 2, 4, and 8 weeks after the surgeries, and the calvaria was submitted to histologic processing for histomorphometric analysis. The qualitative analysis has shown that both defects presented the same histologic characteristics so that a better organized, more mature, and well-vascularized bone tissue was noticed in the eighth week. A good bone repair was achieved using either the mixture of calcium chloride and thrombin or the calcium chloride alone as a restarting agent of the coagulation process.
Resumo:
Metallic biomaterials are used to reinforce or to restore the form and function of hard tissues. Implants and prosthesis are used to replace shoulders, knees, hips and teeth. When these materials are inserted in bone several biological reactions happen. This process can be associated to surface properties (topography, roughness and surface energy). In this work, the influence of biomimetic surface treatment in the osseointegration of Ti-30Ta dental implants was evaluated. Ingots were obtained from titanium and tantalum by using an arc-melting furnace. They were submitted to heat treatment at 1,100°C for 1 h, cooled in water and cold worked by swaging. Then, screw-shaped implants (2.0 mm diameter by 2.5 mm length) were manufactured and they were implanted in a rat's femur. Animals were divided into two groups: untreated (control group) and treated (biomimetic surface treatment). They were sacrificed 30 days after implantation. For histological analysis, implants with surrounding tissue were removed and immersed in formaldehyde. Samples were embedded in polymethyl methacrylate and after polymerization, cut with a saw, polished and mounted on glass slides. The results obtained suggest that biomimetic surface treatment was able to promote an increase osseointegration on the surface of dental implants. © Springer-Verlag Berlin Heidelberg 2013.
Resumo:
The rehabilitation with oral implants is, without any doubt, a consecrated technique. But often we face situations of high bone atrophy where the conventional installation of dental implants is not possible. The posterior mandible, when severely resorbed, generally requires complex techniques to be rehabilitated with implants, such as the lateralization of the inferior alveolar nerve. As an option for these cases, this paper proposes the use of short implants for the rehabilitation of severely resorbed posterior mandible. Copyright © 2013 by Mutaz B. Habal, MD.
Resumo:
Aim: To evaluate the influence of the presence or absence of adjacent teeth on the level of the mesial and distal alveolar bony crest following healing at sites where implants were installed immediately into extraction sockets. Material and methods: Six Labrador dogs were used. In the right side of the mandible, full-thickness flaps were elevated, and the second, third, and fourth premolars and first molars were extracted. In the left side of the mandible, endodontic treatments of the mesial roots of the third and fourth premolars as well as of the first molars were performed. Full-thickness flaps were elevated, the teeth were hemi-sected, and the distal roots were removed. The second premolars were extracted as well. Subsequently, implants were bilaterally installed with the implant shoulder flush with the buccal bony crest. Implants were placed in the center of the alveoli, but at the fourth premolars, they were placed toward the lingual bony plate of the alveoli. After 3 months of healing, the animals were euthanized and histological sections of the sites prepared. Results: Larger bony crest resorption was observed at the test compared with the control sites, both at the bucco-lingual and mesio-distal aspects. The differences between test and controls for the coronal level of osseointegration were smaller than those for resorption. When data from all mesial and distal sites facing an adjacent tooth were collapsed and compared with those opposing an edentulous zone, lower bony crest resorption and deeper residual marginal defects were found at the sites with neighboring teeth. Conclusion: The extraction of teeth adjacent to a socket into which implants were installed immediately after tooth extraction caused more alveolar bone resorption both for the bucco-lingual and at the mesio-distal aspects compared with sites adjacent to a maintained tooth. © 2012 John Wiley & Sons A/S.
Resumo:
Aim: To evaluate the influence of implant positioning into extraction sockets on bone formation at buccal alveolar dehiscence defects. Material and Methods: In six Labrador dogs the pulp tissue of the mesial roots of 4P4 was removed and the root canals were filled. Flaps were elevated bilaterally, the premolars hemi-sectioned and the distal roots removed. The implants were placed in contact with either the buccal (test site) or with the lingual (control site) bony wall of the extraction sockets. Healing abutments were affixed and triangular buccal bony dehiscence defects, about 2.7 mm deep and 3.5 mm wide, were then prepared. No regenerative procedures were done and a non-submerged healing was allowed. After 4 months of healing, block sections of the implant sites were obtained for histological processing and peri-implant tissue assessment. Results: After 4 months of healing, the bony crest and the coronal border of osseointegration at the test sites were located 1.71 ± 1.20 and 2.50 ± 1.21 mm apically to the implant shoulder, respectively. At the control sites, the corresponding values were 0.68 ± 0.63 and 1.69 ± 0.99 mm, respectively. The differences between test and control reached statistical significance (P < 0.05). Residual marginal bone defects were found both at the test and control sites. A statistically significant difference between test and control sites was only found at the lingual aspects (depth 2.09 ± 1.01 and 1.01 ± 0.48 mm, respectively). Similar heights of the buccal biological width were observed at both sites (about 5.1 mm). Conclusions: The placement of implants in a lingual position of the extraction sockets allowed a higher degree of bone formation at buccal alveolar dehiscence defects compared with a buccal positioning. © 2012 John Wiley & Sons A/S.