185 resultados para Biomass burning
Resumo:
It is clear today the ever-accelerating search for new fuels that will eventually replace those that will survive in our society, which are fossil fuels. For this reason, a fuel used since the dawn of humanity and much studied since then, considered the generator of clean, renewable energy, can earn more and more space in the power generation sector, which is biomass. We performed two experiments with two different types of biomass, one from the Amazon rainforest and other pine and eucalyptus as waste from the sawmill UNESP Itapeva. In the first experiment, conducted at the Laboratory of Combustion and Propulsion INPE Cachoeira Paulista were conducted three tests in a chimney with a fan creating forced ventilation, where the biomass was burned and deposited on a support beneath the hood. In the second experiment was conducted to analyze the emission of particulate matter using biomass (waste) from the sawmill on the campus of UNESP experimental Itapeva the burning of it in a burner for heating water for a wood oven. In these experiments we used a particle called DATARAM4 sampler that is capable of sampling both outdoors and inside of pipelines, which is the focus of this work. With this equipment it was possible to measure the concentration of particulate matter in all the firings as above, and compare them to levels acceptable in the current law, always trying to analyze the so-called fine particles, which are those with diameters less than 2.5 μm. Using data obtained from the equipment was also possible to evaluate the diametral distribution of particulate matter in question, and verify which phases of the flares in the concentration and the diameters of the particles are the most critical. In this work we concluded that in all firings conducted concentrations of particulate matter were higher than that allowed by the law, and the diameters were found that are more harmful to human health
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The steady increase in the price of oil and its derivatives, carbon credits, the concern with the environment combined with the precipitation of rain water and lack of water resources that Brazil has suffered in 2014 caused a migration of participation sources of energy in the Brazilian energy matrix. The hydropower sector suffered big drop at 2013 and is suffering so far, contributing thus to the generation and cogeneration of thermal energy using renewable energy sources such as: sugarcane bagasse, wood chips, rice husks, among others. The selling price of the electricity market reached the level of R$ 807, 00 MWh in January 2014 (Source: ANEEL), heating the Brazilian thermoelectric sector. Although thermoelectric use in bulk water as vaporizing fluid to produce electricity and use in various processes, water reuse plans have become an important factor in these industries. The increased use of biomass has been the bagasse which is allied to the sugarcane sector, strong market in Brazil, and consists basically use the rest of sugar cane, sugarcane industries that would play out. The sugar and ethanol industry is very unstable and only lasts for 6-8 months a year, and the remaining time in the period known as between crop that corresponds to the planting and harvesting of sugarcane and then enter the period of vintage which is the constant cane harvesting and crushing it. This instability of the market and the thermoelectric idle period leads the thermoelectric industries to seek other sources of renewable energy, such as wood chips (pine, Eucalyptus, Orange), rice husk, sorghum among others, to not be dependent on alcohol sector. The present work aims to study the use of wood chips as an alternative biomass for burning a fuel that essentially uses bagasse, the thermoelectric in question consists of two boilers that produce together 350 t / h ... (Complete Abstract click electronic access below)
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Agronomia (Ciência do Solo) - FCAV
Resumo:
Pós-graduação em Agronomia (Produção Vegetal) - FCAV
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A pretreatment with microwave irradiation was applied to enhance enzyme hydrolysis of corn straw and rice husk immersed in water, aqueous glycerol or alkaline glycerol. Native and pretreated solids underwent enzyme hydrolysis using the extract obtained from the fermentation of Myceliophthora heterothallica, comparing its efficiency with that of the commercial cellulose cocktail Celluclast (R). The highest saccharification yields, for both corn straw and rice husk, were attained when biomass was pretreated in alkaline glycerol, method that has not been previously reported in literature. Moreover, FTIR, TG and SEM analysis revealed a more significant modification in the structure of corn straw subjected to this pretreatment.Highest global yields were attained with the crude enzyme extract, which might be the result of its content in a great variety of hydrolytic enzymes, as revealed zymogram analysis. Moreover, its hydrolysis efficiency can be improved by its supplementation with commercial beta-glucosidase.
Resumo:
Graphene, in single layer or multi-layer forms, holds great promise for future electronics and high-temperature applications. Resistance to oxidation, an important property for high-temperature applications, has not yet been extensively investigated. Controlled thinning of multi-layer graphene (MLG), e.g., by plasma or laser processing is another challenge, since the existing methods produce non-uniform thinning or introduce undesirable defects in the basal plane. We report here that heating to extremely high temperatures (exceeding 2000 K) and controllable layer-by-layer burning (thinning) can be achieved by low-power laser processing of suspended high-quality MLG in air in "cold-wall" reactor configuration. In contrast, localized laser heating of supported samples results in non-uniform graphene burning at much higher rates. Fully atomistic molecular dynamics simulations were also performed to reveal details of oxidation mechanisms leading to uniform layer-by-layer graphene gasification. The extraordinary resistance of MLG to oxidation paves the way to novel high-temperature applications as continuum light source or scaffolding material.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)