196 resultados para ANHYDROUS TETRABUTYLAMMONIUM FLUORIDE
Resumo:
ObjectivesThis study aimed to evaluate the fluoride concentration in the fingernails and toenails of children aged 18-30months during use of fluoride-containing toothpastes supplemented with calcium glycerophosphate (CaGP) or sodium trimetaphosphate (TMP).MethodsAccording to the toothpaste used, children (n=56) were randomly assigned into three groups: 500gF/g with 1% TMP, 500gF/g with 0.25% CaGP, and 1100gF/g. Fingernails and toenails were collected monthly over a period of 330days, from the beginning of toothpaste use. Fluoride concentration in the water consumed by the volunteers and fluoride intake from diet and toothpaste were also determined. Fluoride analyses were performed with the electrode after hexamethyldisiloxane-facilitated diffusion or by the direct method, according to the samples. Data passed normality and homoscedasticity tests and were analyzed by 2-way analysis of variance (anova) and 1-way anova followed by Student-Newman-Keuls test (P<0.05).ResultsFluoride levels in the fingernails and toenails as well as fluoride intake from toothpaste were similar for the groups treated with 500gF/g with 1% TMP and 500gF/g with 0.25% CaGP toothpastes, but significantly lower than the 1100 gF/g group (P<0.05). No significant differences were noted among the groups regarding fluoride intake from diet and that by water consumed by the volunteers (P>0.05).ConclusionThe results of the longitudinal study suggest that the level of fluoride present in nails was lower with the use of toothpastes with a low fluoride concentration.
Resumo:
This study tested the fluoride-release rate and the root caries inhibitory effect of dental adhesives. In phase 1, the fluoride released from samples (n = 5) of the adhesives A (Optibond Solo), B (One-up Bond F), C (Prime & Bond NT), D (Tenure Quick), and also of the controls [+] (glass-ionomer cement) and [-] (non-fluoride releasing adhesive), was quantified on a daily basis during a pH-cycling, caries-simulating phenomenon. In phase 2, restorations were made in bovine root dentine slabs (n = 16) with the same adhesives associated with a non-fluoridated composite. Control [+] restorations were made entirely with glass-ionomer cement. Specimens were thermocycled and submitted to the pH-cycling regimen. Demineralization areas and the presence of the wall lesion (WL) and the inhibition zone (IZ) were determined by polarizing light microscopy in dentine adjacent to the restoration. The highest concentration of fluoride was released by the control [+]; adhesives A, B and C, also released fluoride. No detectable amount of fluoride was released by D or [-]. Smaller areas of demineralization were found with control [+], whereas the demineralization areas of adhesives A-D and [-] did not differ from each other. No WL was detected, and higher percentages of IZ were recorded to [+] and to adhesive A. Although some dental adhesives were able to release fluoride, they could not inhibit secondary caries development as well as the glass-ionomer cement.
Resumo:
The usefulness of fluoride-releasing restorations in secondary caries prevention may be questioned because of the presence of other common sources of fluoride and because of ageing of the restorations. This study tested the hypothesis that glass-ionomer cement restorations, either aged or unaged, do not prevent secondary root caries, when fluoride dentifrice is frequently used. Sixteen volunteers wore palatal appliances in two phases of 14 days, according to a 2 x 2 crossover design. In each phase the appliance was loaded with bovine root dentine slabs restored with either glass-ionomer or resin composite, either aged or unaged. Specimens were exposed to cariogenic challenge 4 times/day and to fluoridated dentifrice 3 times/day. The fluoride content in the biofilm (FB) formed on slabs and the mineral loss (Delta Z) around the restorations were analysed. No differences were found between restorative materials regarding the FB and the Delta Z, for either aged (p = 0.792 and p = 0.645, respectively) or unaged (p = 1.00 and p = 0.278, respectively) groups. Under the cariogenic and fluoride dentifrice exposure conditions of this study, the glass-ionomer restoration, either aged or unaged, did not provide additional protection against secondary root caries. Copyright (c) 2006 S. Karger AG, Basel.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Aim: The aim of the study was evaluate the finishing and polishing effect of the color stability of the composite resin Filtek Supreme XT, according to different fluoride solutions and time. Material and Methods: Specimens were prepared (n=140) with half of the samples finished and polished. The experimental groups were divided according to the presence or absence of finishing and polishing and immersion solutions (artificial saliva, sodium fluoride solution at 0.05% - manipulated, Fluordent Reach, Oral B, Fluorgard). The specimens remained in artificial saliva for 24 hours and were subjected to an initial color analysis using a spectrophotometer CIELab system. Then, they were immersed in the experimental solutions for 1 minute a day. The readings of the color change were made after 24 and 48 hours, 7, 14, 21, 30 and 60 days after the first immersion. The three-way mixed Analysis of Variance (ANOVA) ("finishing/polishing", "immersion medium" and “time”) were performed. For multiple comparisons, the Sidak test for repeated measure was used, with a 5% level of significance. Results: The finishing and polishing factor showed significant variability, independently of the immersion media (p<0.001). Cconclusion: Finishing and polishing procedures yielded better color stability to composite resin over time, regardless of the immersion media.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This study evaluated the influence of finishing and polishing procedures and differ-ent fluoride solutions on superficial morphology and chemistry of the nanofilled composite resinSupreme XT (3M) through the EDX analysis and SEM evaluation. Circular specimens (n 5 30) of 10mm diameter and 2 mm thickness were prepared, with half of the sample assays finished and polishedwith Super-Snap1sandpaper. The experimental groups were divided according to the presence or ab-sence of finishing and polishing and solutions (arti ficial saliva, 0.0 5% of manipulated sodium fluoridesolution, Fluordent Re ach, Oral B, Fluorgard). Specimens were immersed in each respective solutionfor 1 min per day, during 60 days and stored in artificial saliva at 37 6 18C between immersion peri-ods. Topography and chemical analysis was qualitative. It was observed that specimens submitted tofinishing and polishing procedures had lower superficial degradation. Fluoride solutio ns promoted su-perficial alterations on specimens, being the highest degradation obtained with Fluordent Reach. Itca n be concluded that finishing and polishing procedures and the immersion media influence the su-perficial morphology of composite resin tested; the Fluordent Reach was the flu oride solution thatmo st affected the material’s surface.
Resumo:
Composite resin is a dental material susceptible to color change over time which limits the longevity of restorations made with this material. The influence of light curing units and different fluoride mouthrinses on superficial morphology and color stability of a nanofilled composite resin was evaluated. Specimens (N = 150) were prepared and polished. The experimental groups were divided according to the type of light source (halogen and LED) and immersion media (artificial saliva, 0.05% sodium fluoride solution-manipulated, Fluordent Reach, Oral B, Fluorgard). Specimens remained in artificial saliva for 24-h baseline. For 60 days, they were immersed in solutions for 1 min. Color readout was taken at baseline and after 60 days of immersion. Surface morphology was analyzed by Scanning Electron Microscopy (SEM) after 60 days of immersion. Color change data were submitted to two-way Analysis of Variance and Tukey tests (α = 0.05). Surface morphology was qualitatively analyzed. The factor light source presented no significant variability (P = 0.281), the immersion media, significant variability (P < 0.001) and interaction between factors, no significant variability (P = 0.050). According to SEM observations, no difference was noted in the surface of the specimens polymerized by different light sources, irrespective of the immersion medium. It was concluded that the light source did not influence the color stability of composite, irrespective of the immersion media, and among the fluoride solutions analyzed, Fluorgard was the one that promoted the greatest color change, however, this was not clinically perceptible. The immersion media did not influence the morphology of the studied resin. Microsc. Res. Tech. 77:941–946, 2014. © 2014 Wiley Periodicals, Inc.
Resumo:
Coordenação de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose: To analyze whether immersion in sodium fluoride (NaF) solutions and/or common acidic beverages (test solutions) would affect the surface roughness or topography of lithium disilicate ceramic. Methods: 220 ceramic discs were divided into four groups, each of which was subdivided into five subgroups (n = 11). Control group discs were immersed in one of four test beverages for 4 hours daily or in artificial saliva for 21 days. Discs in the experimental groups were continuously immersed in 0.05% NaF, 0.2% NaF, or 1.23% acidulated phosphate fluoride (APF) gel for 12, 73, and 48 hours, respectively, followed by immersion in one of the four test beverages or artificial saliva. Vickers microhardness, surface roughness, scanning electron microscopy (SEM) associated with energy dispersive spectroscopy, and atomic force microscopy (AFM) assessments were made. Data were analyzed by nested analysis of variance (ANOVA) and Tukey's test (alpha = 0.05). Results: Immersion in the test solutions diminished the microhardness and increased the surface roughness of the discs. The test beverages promoted a significant reduction in the Vickers microhardness in the 0.05% and 0.2% NaF groups. The highest surface roughness results were observed in the 0.2% NaF and 1.23% APF groups, with similar findings by SEM and AFM. Acidic beverages affected the surface topography of lithium disilicate ceramic. Fluoride treatments may render the ceramic surface more susceptible to the chelating effect of acidic solutions.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Purpose: To evaluate the ability of calcium-containing prescription-strength fluoride (F) toothpastes in preventing enamel erosion under low salivary flow simulating conditions. Methods: Enamel and dentin bovine specimens were assigned to the following groups: A - placebo; B - 1,100 ppm F/NaF (Aquafresh Advanced); C - 5,000 ppm F/NaF (Prevident 5000 Booster); D - 5000 ppm F/NaF+calcium sodium phosphosilicate (Topex Renew); and E - 5,000 ppm F/NaF+tri-calcium phosphate (Clinpro 5000). Specimens were positioned in custom-made devices, creating a sealed chamber on the surface, connected to peristaltic pumps. Citric acid was injected into the chamber for 2 minutes, followed by artificial saliva (0.05 ml/minute), for 60 minutes, 4x/day, for 3 days. Aquafresh was also tested under normal salivary flow (0.5 ml/minute), as reference (Group F). Specimens were exposed to the toothpastes for 2 minutes, 2x/day. After cycling, surface loss (SL) and concentration of loosely- and firmly-bound F were determined. Data were analyzed by ANOVA. Results: Group A (placebo) presented highest surface loss (SL), while Group F had the lowest, for both substrates. For enamel, none of the dentifrices differed from Group B or among each other. For dentin, none of the dentifrices differed from Group B, but Group E showed greater protection than Group C. Group E presented the highest F concentrations for both substrates, only matched by Group D for firmly-bound fluoride on enamel. All fluoridated dentifrices tested reduced SL, with no additional benefit from higher F concentrations. Some formulations, especially Clinpro 5000, increased F availability on the dental substrates, but no further erosion protection was observed.