193 resultados para ALUMINOSILICATE GLASSES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spectroscopic properties of ytterbium-doped tellurile glasses with different compositions are reported. Results of linear refractive index, absorption and emission spectra, and fluorescence lifetimes are presented. The studied samples present high refractive index (∼2.0) and large transmission window (380-6000nm). Absorption and emission cross-sections are calculated as well as the minimum pump laser intensity. The results are compared with the values of other laser materials, in order to investigate applications as laser media in the infrared region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystallization of fluoroindate glasses doped with Gd3+, Mn2+ and Cu2+ heat treated at different temperatures, ranging from the glass transition temperature (Tg) to the crystallization temperature (Tc), are investigated by electron paramagnetic resonance (EPR) and 19F nuclear magnetic resonance (NMR). The EPR spectra indicate that the Cu2+ ions in the glass are located in axially distorted octahedral sites. In the crystallized glass, the g-values agreed with those reported for Ba2ZnF6, which correspond to Cu2+ in a tetragonal compressed F- octahedron and to Cu2+ on interstitial sites with a square-planar F- co-ordination. The EPR spectra of the Mn2+ doped glasses exhibit a sextet structure due to the Mn2+ hyperfine interaction. These spectra suggest a highly ordered environment for the Mn2+ ions (close to octahedral symmetry) in the glass. The EPR spectra of the recrystallized sample exhibit resonances at the same position, suggesting that the Mn2+ ions are located in sites of highly symmetric crystalline field. The increase of the line intensity of the sextet and the decrease of the background line in the thermal treated samples suggest that the Mn2+ ions move to the highly ordered sites which contribute to the sextet structure. The EPR spectra of the Gd3+ doped glasses exhibit the typical U-spectrum of a s-state ion in a low symmetry site in disordered systems. The EPR of the crystallized glasses, in contrast, have shown a strong resonance in g ≈ 2.0, suggesting Gd3+ ions in environment close to cubic symmetry. The 19F NMR spin-lattice relaxation rates were also strongly influenced by the crystallization process that takes over in samples annealed above Tc. For the glass samples (doped or undoped) the 19F magnetization recoveries were found to be adjusted by an exponential function and the spin-lattice relaxation was characterized by a single relaxation time. In contrast, for the samples treated above Tc, the 19F magnetization-recovery becomes non-exponential. A remarkable feature of our results is that the changes in the Cu2+, Mn2+, Gd3+ EPR spectra and NMR relaxation, are always observed for the samples annealed above Tc. © 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anelastic spectroscopy (internal friction and the dynamic modulus) was measured by means of a torsion pendulum at 3-12 Hz, in the range of 100-300 K, for a KAP metaphosphate glass. Two thermally activated internal friction peaks appeared at ∼190 and ∼250 K. These peaks were attributed to the behavior of potassium ions (high temperature) and to hydrogen (low temperature). Dynamic modulus showed a gradual decrease with increasing temperature in the range studied for all compositions. © 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The population inversion of the Tm3+ in GLKZ glass involved in the 1470 nm emission (3H4 → 3F 4) as a function of Tb (or Eu) concentration was calculated by computational simulation for a CW laser pumping at 792 nm. These calculations were performed using the experimental Tm→Tb an Tm→Eu transfer rates and the spectroscopic parameters of the Tm (0.1 mol %) system. The result shows that 0.2 mol % (Tb3+) and 0.4 mol % of Eu3+ ions propitiate best population inversion of Tm3+ (0.1 mol %) maximizing the amplification coefficient of germanate (GLKZ) glass when operating as laser intensity amplification at 1470 nm. Besides the effective deactivation of the 3F4 level, the presence of Tb3+ or Eu 3+ ions introduce a depopulation of the 3H4 emitting level by means of a cross relaxation process with Tm3+ ions. In spite of this, the whole effect is verified to be benefic for using Tm-doped GLKZ glass codoped with Tb3+ or Eu3+ as a suitable material for confectioning optical amplifiers that operates in the S-band for telecommunication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Lead-cadmium fluorogermanate glasses (PbF2-CdF 2-PbGeO3) the addition of metal fluorides to the base PbGeO3 glass leads to a decrease of the glass transition temperature (Tg) and to an enhancement of the ionic conductivity properties. Based on different spectroscopic techniques (19F NMR, Ge K-edge X-ryas absorption and Raman scattering) an heterogeneous glass structure is proposed at the molecular scale, which can be described by fluoride rich regions permeating the metagermanate chains. The temperature dependence of the 19F NMR lineshapes and relaxation times exhibits the qualitative and quantitative features associated with the high fluoride mobility in these systems. Eu 3+ emission and vibronic spectra are used to follow the crystallization process leading to transparent glass ceramics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonlinear (NL) optical properties of antimony oxide based glasses (AG) were characterized for excitation wavelengths from 800 to 1600 m. The NL refractive indices, n2, and the two-photon absorption (TPA) coefficient, β, have been evaluated using the Z-scan technique. Values of n2≈ 10-15 - 10-14 cm2/W of electronic origin were measured and negligible TPA coefficients (β < 0.003 cm/GW) were determined. The response time of the nonlinearity is faster than 100 fs as determined using the Kerr shutter technique. The figure-of-merit usually considered for all-optical switching, T = 2βλ/n2 , indicates that AG are very good materials for ultrafast switches at telecom wavelengths. © 2007 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical characteristics of tellurite glasses containing silver nanoparticles (NPs) and the influence on the emission spectrum of Er 3+ ions were studied. The transitions 4f ↔ 4f from erbium ions, mainly the 4I13/2 → 4I15/2 transition that involve upconversion energy process, have a strongly dependence with the chemical structure of the rare earth ion. In the present work, silver nanparticles (NPs) embedded in the host vitreous material, show a significant enhance (or quenching) on the erbium fluorescence due the long-range electromagnetic interaction between the plasmon surface energy of the Ag NPs (Localized Surface Plasmon Resonance -LSPR) and the Er3+ ions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We synthesize and study the properties of praseodymium doped fluoroindate glasses. Glass compositions with praseodymium molar concentrations up to 5% were obtained with good optical quality. Thermal, optical, and luminescence properties are investigated. Judd-Ofelt analysis is used to determine radiative lifetime and emission cross-section of the orange transition originating from the 3P0 level. We find that these glasses are good candidates for the realization of blue diode laser pumped orange lasers for quantum information processing applications. © 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glasses in the ternary system (70 - x)NaPO3-30WO 3-xBi2O3, with x = 0-30 mol %, were prepared by the conventional melt-quenching technique. X-ray diffraction (XRD) measurements were performed to confirm the noncrystalline nature of the samples. The influence of the Bi2O3 on the thermal, structural, and optical properties was investigated. Differential scanning calorimetry analysis showed that the glass transition temperature, Tg, increases from 405 to 440 C for 0 ≤ x ≤ 15 mol % and decreases to 417 C for x = 30 mol %. The thermal stability against devitrification decreases from 156 to 67 C with the increase of the Bi2O3 content. The structural modifications were studied by Raman scattering, showing a bismuth insertion into the phosphate chains by Bi-O-P linkage. Furthermore, up to 15 mol % of Bi 2O3 formation of BiO6 clusters is observed, associated with Bi-O-Bi linkage, resulting in a progressive break of the linear phosphate chains that leads to orthophosphate Q0 units. The linear refractive index, n0, was measured using the prism-coupler technique at 532, 633, and 1550 nm, whereas the nonlinear (NL) refractive index, n 2 was measured at 1064 nm using the Z-scan technique. Values of 1.58 ≤ n0 ≤ 1.88, n2 ≥ 10-15 cm 2/W and NL absorption coefficient, α2 ≤ 0.01 cm/GW, were determined. The linear and NL refractive indices increase with the increase of the Bi2O3 concentration. The large values of n0 and n2, as well as the very small α2, indicate that these materials have large potential for all-optical switching applications in the near-infrared. © 2012 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The two fundamental approaches to fission-track dating involve either an explicit determination of the thermal neutron fluence (φ-method) or a calibration against age standards (ζ-method). The neutron fluence measurements are carried out with metal-activation monitors or with uranium-fission monitors, co-irradiated with the samples. Uranium-fission monitors consist of either a thin mono-atomic) film, or a thick fission source (standard uranium glass) irradiated against a muscovite external track detector. In this work, different techniques for performing neutron-fluence measurements were compared: based on thin-film calibration, based on thick-source calibration, and based on gamma spectrometry of co-irradiated metal monitors (Au, Co). The results suggest that more experiments are needed to make all calibrations consistent, including new measurements of the length of etched induced tracks in mica. Also the standard glass calibration carried out with thin films should be confirmed with a greater number of calibrating irradiations. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Germanium- and tellurium-based glasses have been largely studied due to their recognized potential for photonics. In this paper, we review our recent studies that include the investigation of the Stokes and anti-Stokes photoluminescence (PL) in different glass systems containing metallic and semiconductor nanoparticles (NPs). In the case of the samples with metallic NPs, the enhanced PL was attributed to the increased local field on the rare-earth ions located in the proximity of the NPs and/or the energy transfer from the metallic NPs to the rare-earth ions. For the glasses containing silicon NPs, the PL enhancement was mainly due to the energy transfer from the NPs to the Er3+ ions. The nonlinear (NL) optical properties of PbO-GeO 2 films containing gold NPs were also investigated. The experiments in the pico- and subpicosecond regimes revealed enhanced values of the NL refractive indices and large NL absorption coefficients in comparison with the films without gold NPs. The reported experiments demonstrate that germanate and tellurite glasses, having appropriate rare-earth ions doping and NPs concentration, are strong candidates for PL-based devices, all-optical switches, and optical limiting. © 2013 Cid Bartolomeu de Araujo et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have prepared heavy metal oxide glasses containing metallic copper nanoparticles with promising nonlinear optical properties which were determined by Z-scan and pump-probe measurements using femtosecond laser pulses. For the wavelengths within the plasmon band, we have observed saturable absorption and response times of 2.3 ps. For the other regions of the spectrum, reverse saturable absorption and lifetimes shorter than 200 fs were verified. The nonlinear refractive index is about 2.0 × 10-19 m2/W from visible to telecom region, thus presenting an enhancement effect at wavelengths near the plasmon and Cu+2 d-d band. © 2013 Springer Science+Business Media New York.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Values of glass transition temperature (Tg) and of linear expansion coefficient (α) for Asx S100-x glasses were measured in the range of concentrations 35 × 42. Because of the importance of the glass formation region 35 × 42 for the optical fibers elaboration, special attention was made on high-pure Asx S100-x glasses. For the glass in the range of 35 × 38, we measure Tg with the interval of x equal to 1 at.% of arsenic. We also measured the Tg values with the interval of x equal to 0.5 at.% of As. We obtained nonlinear behavior of Tg, reflecting the change in molecular composition of As-S glass in the glass composition range studied. The control of such parameters is important to produce optical fibers with specific numerical aperture. © 2013 The American Ceramic Society and Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the fabrication of novel lead-germanate glasses and fibers. We have characterized these glasses in terms of their thermal properties, Raman spectra and refractive indices (both linear and nonlinear) and present them as viable alternatives to tellurite glasses for applications requiring highly nonlinear optical fibers. © 2013 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Processes involving visible to infrared energy conversion are presented for Pr3+-Yb3+ co-doped fluoroindate glasses. The emission in the visible and infrared regions, the luminescence decay time of the Pr 3+:3P0 → 3H4 (482 nm), Pr3+:1D2 → 3H6 (800 nm), Yb3+:2F5/2 → 2F 7/2 (1044 nm) transitions and the photoluminescence excitation spectra were measured in Pr3+ samples and in Pr3+-Yb 3+ samples as a function of the Yb3+ concentration. In addition, energy transfer efficiencies were estimated from Pr3+: 3P0 and Pr3+:1D2 levels to Yb3+:2F7/2 level. Down-Conversion (DC) emission is observed due to a combination of two different processes: 1-a one-step cross relaxation (Pr3+:3P0 → 1G4; Yb3+:2F7/2 → 2F5/2) resulting in one photon emitted by Pr3+ (1G4 → 3H5) and one photon emitted by Yb3+ (2F7/2 → 2F5/2); 2-a resonant two-step first order energy transfer, where the first part of energy is transferred to Yb3+ neighbor through cross relaxation (Pr3+:3P0 → 1G4; Yb3+:2F7/2 → 2F5/2) followed by a second energy transfer step (Pr 3+:1G4 → 3H4; Yb3+:2F7/2 → 2F5/2). A third process leading to one IR photon emission to each visible photon absorbed involves cross relaxation energy transfer (Pr3+: 1D2 → 3F4; Yb 3+:2F7/2 → 2F5/2). © 2013 Elsevier B.V. All rights reserved.