312 resultados para spider crabs


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mesobolivar luteus (Keyserling 1891) and Micropholcus fauroli (Simon 1887) specimens were collected in Ubatuba and Rio Claro, both in the state of São Paulo, Brazil. Mesabolivar luteus showed 2n (male) = 15 = 14 + X and 2n (9) = 16 = 14 + XX in mitotic metaphases and 711 + X in diplotenic cells. During late prophage 1, all bivalents presented a ring shape, evidencing two chiasmata per bivalent. In this species, some diplotenic cells appear in pairs, maybe due to specific characteristics of the intercellular bridges. The metaphases 11 showed n = 7 or n = 8 = 7 + X chromosomes. Micropholcus fauroti evidenced 2n (male) = 17 = 16 + X in spermatogonial metaphases and 8II+X in diplotenic cells, with only one chiasma per bivalent, contrasting with M. luteus. In both species, all chromosomes were metacentrics. The sexual chromosome X was the largest element and appeared as a univalent during meiosis I. These are the first cytogenetical data for the genera Mesabolivar and Micropholcus. Additionally, M. luteus is the first chromosomally analyzed species of the New World clade and the observed diploid number for M. fauroti had not yet been recorded in Pholcidae.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Joro spider toxin (JSTX-3), derived from Nephila clavata, has been found to block glutamate excitatory activity. Epilepsy has been studied in vitro, mostly on rat hippocampus, through brain slices techniques. The aim of this study is to verify the effect of the JSTX-3 on the epileptiform activity induced by magnesium-free medium in rat CA1 hippocampal neurons. Experiments were performed on hippocampus slices of control and pilocarpine-treated Wistar rats, prepared and maintained in vitro. Epileptiform activity was induced through omission of magnesium from the artificial cerebrospinal fluid (0-Mg2+ ACSF) superfusate and iontophoretic application of N-methyl-D-aspartate (NMDA). Intracellular recordings were obtained from CA] pyramidal neurons both of control and epileptic rats. Passive membrane properties were analyzed before and after perfusion with the 0-Mg2+ ACSF and the application of toxin JSTX-3. During the ictal-like activity, the toxin JSTX-3 was applied by pressure ejection, abolishing this activity. This effect was completely reversed during the washout period 2. when the slices were formerly perfused with artificial cerebrospinal fluid (ACSF) and again with 0-Mg2+ ACSF. Our results suggest that the toxin JSTX-3 is a potent blocker of induced epileptiform activity. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Marine biological invasions have been regarded as one of the major causes of native biodiversity loss, with shipping and aquaculture being the leading contributors for the introductions of alien species in aquatic ecosystems. In the present study, five aquatic alien species (one mollusk, three crustaceans and one fish species) were detected during dives, shore searches and from the fisheries on the coast of the Delta do Parnaiba Environmental Protection Area, in the States of Piaui and Maranhao, Northeastern Brazil. The species were the bicolor purse-oyster Isognomon bicolor, the whiteleg shrimp Litopenaeus vannamei, the giant river prawn Macrobrachium rosenbergii, the Indo-Pacific swimming crab Charybdis hellerii and, the muzzled blenny Omobranchus punctatus. Ballast water (I. bicolor, C. hellerii, and O. punctatus) and aquaculture activities (L. vannamei and M. rosenbergii) in adjacent areas are the most likely vectors of introduction. All exotic species found have potential impact risks to the environment because they are able to compete against native species for resources (food and habitat). Isognomon bicolor share the same habitat and food items with the native bivalve species of mussels and barnacles. Litopenaeus vannamei share the same habitat and food items with the native penaeids such as the pinkspot shrimp Farfantepenaeus brasiliensis, the Southern brown shrimp Farfantepenaeus subtilis, and the Southern white shrimp Litopenaeus schmitti, and in the past few years L. vannamei was responsible for a viral epidemics in the cultivation tanks that could be transmitted to native penaeid shrimps. Charybdis hellerii is also able to cause impacts on the local fisheries as the species can decrease the populations of native portunid crabs which are commercialized in the studied region. Macrobrachium rosenbergii may be sharing natural resources with the Amazon River prawn Macrobrachium amazonicum. Omobranchus punctatus shares habit with the native redlip blenny Ophioblennius atlanticus and other fishes, such as the frillfin goby Bathigobius soporator. Some immediate remedial measures to prevent further introductions from ballast water and shrimp farm ponds should be: (i) to prevent the release of ballast water by ship/vessels in the region; (ii) to reroute all effluent waters from shrimp rearing facilities through an underground or above-ground dry well; (iii) to install adequate sand and gravel filter which will allow passage of water but not livestock; (iv) outdoor shrimp pounds located on floodable land should be diked, and; (v) to promote environmental awareness of those directly involved with ballast water (crews of ship/vessels) and shrimp farms in the region. Rev. Biol. Trop. 58 (3): 909-923. Epub 2010 September 01.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Renan B. Pitilin, Marcio S. Araujo, and Maria L.T. Buschini (2012) Individual specialization in the hunting-wasp Trypoxylon (Trypargilum) agamemnon Richards (Hymenoptera: Crabronidae). Zoological Studies 51(5): 655-662. Individuals of a population may differ with respect to resource use. This among-individual variation in resource utilization is called 'individual specialization' and may substantially impact the ecological and evolutionary dynamics of a population. The aim of this study was to evaluate whether females of 1 population of the hunting-wasp Trypoxylon agamemnon differed in their preferences for spider size and/or taxa. To observe the behavior of wasps, trap-nests were installed in an araucaria forest fragment in the Parque Municipal das Araucarias, Guarapuava (PR), southern Brazil. The indices within-individual component (WIC)/total niche width of a population (TNW) and average of values of the proportional similarity index (IS) were used to measure the degree of individual specialization. We found evidence of strong, significant individual specialization in T agamemnon in terms of both prey size (WIC/TNW = 0.43) and taxa (IS = 0.45). We hypothesized that individual specialization in this species resulted from cognitive tradeoffs that limit individuals to exploring a small subset of available resources. http://zoolstud.sinica.edu.tw/Journals/51.5/655.pdf

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Determinations of Al and Mn concentrations in the tissues (gills, hepatopancreas and muscle) of the freshwater crab Trichodactylus fluviatilis and water samples, both collected from sites on tributaries of the Corumbatai River (São Paulo, Brazil) were performed. The Bioaccumulation Factor (BAF), calculated for different sites with respect to the water concentration, ranged from 173-555 for Al and from 636 - 921 for Mn. Dissolved concentrations of Al and Mn in water samples (collected in different sites) were related to the accumulation of these metals in crabs, suggesting that T. fluviatilis is good biomonitor for Al and Mn pollution in aquatic ecosystem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spider venom sphingomyelinases D catalyze the hydrolysis of sphingomyelin via an Mg2+ ion-dependent acid-base catalytic mechanism which involves two histidines. In the crystal structure of the sulfate free enzyme determined at 1.85 angstrom resolution, the metal ion is tetrahedrally coordinated instead of the trigonal-bipyramidal coordination observed in the sulfate bound form. The observed hyperpolarized state of His47 requires a revision of the previously suggested catalytic mechanism. Molecular modeling indicates that the fundamental structural features important for catalysis are fully conserved in both classes of SMases D and that the Class II SMases D contain an additional intra-chain disulphide bridge (Cys53-Cys201). Structural analysis suggests that the highly homologous enzyme from Loxosceles bonetti is unable to hydrolyze sphingomyelin due to the 95G1y -> Asn and 134Pro -> Glu mutations that modify the local charge and hydrophobicity of the interfacial face. Structural and sequence comparisons confirm the evolutionary relationship between sphingomyelinases D and the glicerophosphodiester phosphoesterases which utilize a similar catalytic mechanism. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sphingomyelinases D (SMases D) from Loxosceles spider venom are the principal toxins responsible for the manifestation of dermonecrosis, intravascular hemolysis, and acute renal failure, which can result in death. These enzymes catalyze the hydrolysis of sphingomyelin, resulting in the formation of ceramide 1-phosphate and choline or the hydrolysis of lysophosphatidyl choline, generating the lipid mediator lysophosphatidic acid. This report represents the first crystal structure of a member of the sphingomyelinase D family from Loxosceles laeta (SMase I), which has been determined at 1.75-angstrom resolution using the quick cryo-soaking technique and phases obtained from a single iodine derivative and data collected from a conventional rotating anode x-ray source. SMase I folds as an (alpha/beta)(8) barrel, the interfacial and catalytic sites encompass hydrophobic loops and a negatively charged surface. Substrate binding and/or the transition state are stabilized by a Mg2+ ion, which is coordinated by Glu(32), Asp(34), Asp(91), and solvent molecules. In the proposed acid base catalytic mechanism, His(12) and His(47) play key roles and are supported by a network of hydrogen bonds between Asp(34), Asp(52), Trp(230), Asp(233), and Asn(252).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Maieta guianensis Aubl. and M. poeppigii Mart. ex. Triana (Melastomataceae) are among the most common myrmecophytic plants in the Amazonian forest understory. These myrmecophytes are colonized exclusively by the ants Pheidole minutula Mayr or Crematogaster sp. and usually host two other arthropods, the spider Faiditus subflavus Exline and Levi and the recently described stilt bug Jalysus ossesae Henry. In this study, the association between J ossesae and the myrmecophytic plants M. guianensis and M. poeppigii in an upland forest area in central Amazon, Brazil, is described. The presence of the stilt bugs on M. guianensis and M. poeppigii and on plants around these myrmecophytes was recorded in five transects. The number and position of the stilt bugs on the leaf surface (upper or lower) and leaf type (with or without domatia) of these myrmecophytes, as well as their behavioral acts, were recorded. Jalysus ossesae was found only on the myrmecophytic plants M. guianensis and M. poeppigii. The stilt bug occurred at similar frequencies on M. guianensis and M. poeppigii, and the number of leaves significantly influenced the presence and number of stilt bugs on these myrmecophytes. Feeding, agonistic interaction between males, and mating were observed. Our data indicate that J. ossesae uses the myrmecophytes M. guinanensis and M. poeppigii as reproductive and foraging sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several spider species use plants as shelter and foraging sites, but the relationships among these organisms are still poorly known. Lynx spiders of the genus Peucetia do not build webs, and many species live strictly in plants bearing glandular trichomes. Peucetia flava Keyserling 1877 inhabits Solanum thomasifolium in southeastern Brazil and usually preys on herbivores and other small insects adhered to the glandular trichomes of its host plant. To evaluate the potential anti-herbivore protection. of this spider species for S. thomasifolium, we glued termites used as herbivore models oil trichomes of S. thomasifolium and on neighboring plants lacking glandular trichomes. leaf miner damage and spider density were recorded for S. thomasifolium plants in July 1997. There was a positive relationship between plant size and spider density. The removal or termites in S. thomasifolium by P. flava was higher than ill plants without glandular trichomes. The leaf miner damage was negatively related to spider density. Our results Suggest that P. flava may be all important plant bodyguard in the defense of S. thomasifolium from its natural herbivores.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)