172 resultados para root mean square
Assessing the uncertainties of model estimates of primary productivity in the tropical Pacific Ocean
Resumo:
Depth-integrated primary productivity (PP) estimates obtained from satellite ocean color-based models (SatPPMs) and those generated from biogeochemical ocean general circulation models (BCGCMs) represent a key resource for biogeochemical and ecological studies at global as well as regional scales. Calibration and validation of these PP models are not straightforward, however, and comparative studies show large differences between model estimates. The goal of this paper is to compare PP estimates obtained from 30 different models (21 SatPPMs and 9 BOGCMs) to a tropical Pacific PP database consisting of similar to 1000 C-14 measurements spanning more than a decade (1983-1996). Primary findings include: skill varied significantly between models, but performance was not a function of model complexity or type (i.e. SatPPM vs. BOGCM); nearly all models underestimated the observed variance of PR specifically yielding too few low PP (< 0.2 g Cm-2 d(-1)) values; more than half of the total root-mean-squared model-data differences associated with the satellite-based PP models might be accounted for by uncertainties in the input variables and/or the PP data; and the tropical Pacific database captures a broad scale shift from low biomassnormalized productivity in the 1980s to higher biomass-normalized productivity in the 1990s, which was not successfully captured by any of the models. This latter result suggests that interdecadal and global changes will be a significant challenge for both SatPPMs and BOGCMs. Finally, average root-mean-squared differences between in situ PP data on the equator at 140 degrees W and PP estimates from the satellite-based productivity models were 58% lower than analogous values computed in a previous PP model comparison 6 years ago. The success of these types of comparison exercises is illustrated by the continual modification and improvement of the participating models and the resulting increase in model skill. (C) 2008 Elsevier BY. All rights reserved.
Resumo:
The Backpropagation Algorithm (BA) is the standard method for training multilayer Artificial Neural Networks (ANN), although it converges very slowly and can stop in a local minimum. We present a new method for neural network training using the BA inspired on constructivism, an alphabetization method proposed by Emilia Ferreiro based on Piaget philosophy. Simulation results show that the proposed configuration usually obtains a lower final mean square error, when compared with the standard BA and with the BA with momentum factor.
Resumo:
An algorithm for adaptive IIR filtering that uses prefiltering structure in direct form is presented. This structure has an estimation error that is a linear function of the coefficients. This property greatly simplifies the derivation of gradient-based algorithms. Computer simulations show that the proposed structure improves convergence speed.
Resumo:
Cattle resistance to ticks is measured by the number of ticks infesting the animal. The model used for the genetic analysis of cattle resistance to ticks frequently requires logarithmic transformation of the observations. The objective of this study was to evaluate the predictive ability and goodness of fit of different models for the analysis of this trait in cross-bred Hereford x Nellore cattle. Three models were tested: a linear model using logarithmic transformation of the observations (MLOG); a linear model without transformation of the observations (MLIN); and a generalized linear Poisson model with residual term (MPOI). All models included the classificatory effects of contemporary group and genetic group and the covariates age of animal at the time of recording and individual heterozygosis, as well as additive genetic effects as random effects. Heritability estimates were 0.08 ± 0.02, 0.10 ± 0.02 and 0.14 ± 0.04 for MLIN, MLOG and MPOI models, respectively. The model fit quality, verified by deviance information criterion (DIC) and residual mean square, indicated fit superiority of MPOI model. The predictive ability of the models was compared by validation test in independent sample. The MPOI model was slightly superior in terms of goodness of fit and predictive ability, whereas the correlations between observed and predicted tick counts were practically the same for all models. A higher rank correlation between breeding values was observed between models MLOG and MPOI. Poisson model can be used for the selection of tick-resistant animals. © 2013 Blackwell Verlag GmbH.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia (Agricultura) - FCA
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Pós-graduação em Biometria - IBB
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)