187 resultados para oocyte recovery


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scientific advances have been made to optimize the healing process in spinal cord injury. Studies have been developed to obtain effective treatments in controlling the secondary injury that occurs after spinal cord injury, which substantially changes the prognosis. Low-intensity laser therapy (LILT) has been applied in neuroscience due to its anti-inflammatory effects on biological tissue in the repairing process. Few studies have been made associating LILT to the spinal cord injury. The objective of this study was to investigate the effect of the LILT (GaAlAs laser-780 nm) on the locomotor functional recovery, histomorphometric, and histopathological changes of the spinal cord after moderate traumatic injury in rats (spinal cord injury at T9 and T10). Thirty-one adult Wistar rats were used, which were divided into seven groups: control without surgery (n = 3), control surgery (n = 3), laser 6 h after surgery (n = 5), laser 48 h after surgery (n = 5), medullar lesion (n = 5) without phototherapy, medullar lesion + laser 6 h after surgery (n = 5), and medullar lesion + laser 48 h after surgery (n = 5). The assessment of the motor function was performed using Basso, Beattie, and Bresnahan (BBB) scale and adapted Sciatic Functional Index (aSFI). The assessment of urinary dysfunction was clinically performed. After 21 days postoperative, the animals were euthanized for histological and histomorphometric analysis of the spinal cord. The results showed faster motor evolution in rats with spinal contusion treated with LILT, maintenance of the effectiveness of the urinary system, and preservation of nerve tissue in the lesion area, with a notorious inflammation control and increased number of nerve cells and connections. In conclusion, positive effects on spinal cord recovery after moderate traumatic spinal cord injury were shown after LILT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oocyte maturation is a complex process involving nuclear and cytoplasmic maturation. The nuclear maturation is a chromosomal segregation and the cytoplasmic maturation involves the reorganization of the cytoplasmic organelles, mRNA transcription and storage of proteins to be used during fertilization and early embryo development. The mechanism of oocyte maturation in vivo and in vitro still are not totally understood. However it is generally accepted that the second messenger cyclic adenosine monophosphate (cAMP) plays a critical role in the maintenance of meiotic blockage of mammalian oocytes. A relative increase in the level of cAMP within the oocyte is essential for maintaining meiosis block, while a decrease in cAMP oocyte concentration allows the resumption of meiosis. The oocyte cAMP concentration is regulated by a balance of two types of enzymes: adenylate cyclase (AC) and phosphodiesterases (PDEs), which are responsible for the synthesis and degradation of cAMP, respectively. After being synthesized by AC in cumulus cells, cAMP are transferred to the oocyte through gap junctions. Thus, specific subtypes PDEs are able to inhibit or attenuate the spontaneous meiotic maturation of oocytes with PDE4 primarily involved in the metabolism of cAMP in granulosa cells and PDE3 in the oocyte. Although the immature oocytes can resume meiosis in vitro, after being removed from antral follicles, cytoplasmic maturation seems to occur asynchronously with nuclear maturation. Therefore, knowledge of the oocyte maturation process is fundamental for the development of methodologies to increase the success of in vitro embryo production and to develop treatments for various forms of infertility. This review will present current knowledge about the maintenance of the oocyte in prophase arrest, and the resumption of meiosis during oocyte maturation, focusing mainly on the changes that take place in the oocyte.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The canine species has been used as an experimental model for preservation of endangered species. Biotechnologies of reproduction, such as in vitro maturation (IVM), have been used to meet this objective. Several protocols for in vitro embryo production (IVEP) in swine and bovine species have been adapted for canids. However, the highest rate reported for in vitro maturation in canids is only 39%, which is still lower than those in other species. Therefore, current research on assisted reproduction in canids have focused on several IVM protocols, including the addition of proteins, hormones, meiosis inhibitors, growth factors and antioxidants to the maturation media and the determination of suitable timing for culture, so that variables involved in the process can be fine-tuned. This review has the main objective of describing major developments and limitations in the process of oocyte maturation in bitches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A better understanding of the paracrine and autocrine regulatory loops within the cumulus-oocyte complex (COC) is fundamental for the improvement of in vitro maturation (IVM) outcomes in humans and domestic species. This review presents the most important local regulators identified in the COC to date with special attention to those secreted by the oocyte and acting on cumulus cells, as well as their roles in different processes crucial for the successful maturation of the COC. An autocrine regulatory loop mediated by epidermal growth factor-like (EGF-like) peptides in cumulus cells triggers COC maturation. During COC differentiation, oocyte secreted factors (OSFs), particularly members of the transforming growth factor-beta (TGF beta) and fibroblast growth factor (FGF) families, regulate meiotic resumption, cumulus expansion, cumulus metabolism, apoptosis and steroidogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)