255 resultados para inbred SHR
Resumo:
Sixty adult tats (Rattus norvegicus albinus) of the same age (3 months) and with a mean body weight of 228 g were divided into two experimental groups. The control group received solid diet (Purina rat chow) and tap water ad libitum. The other (alcoholic group), received the same solid diet and was allowed to drink only sugar cane brandy dissolved in 30° Gay Lussac (v/v). At the end of periods of 90, 180 and 270 days of treatment, the animals were anaesthetized with ethyl ether during estrus, weighed and sacrificed. The final mean body weights were similar in the control and alcoholic groups. The results showed intense atrophy on the lining epithelium of the endometrium of uterine horns in the alcoholic group. Important ultrastructural epithelial alterations were also observed in the female alcoholic group, such as: intense lipid droplet accumulation, increased rough endoplasmic reticulum cisternae and mitochondrial size and presence of intraepithelial neutrophils. The secretory activity of these rats was reduced. Therefore, we concluded that alcohol acts as a toxin on the epithelial layer of the rat endometrium.
Resumo:
Chronic alcoholism alters reproduction and therefore may be responsible for alterations of prostate and seminal vesicles, which are the subject of this analysis in UCh ethanol-drinking rats. The prostate and seminal vesicles of 20 animals were submitted to macroscopic, light microscopy, electron microscopy and morphometric analysis. The UCh rats showed atrophy of the epithelium and reduction of the weight of the prostate and seminal vesicle, liver hypertrophy and fat infiltration and alterations of the hypothalamus-pituitary axis. Ethanol induces changes in the weight and in the epithelium of prostate and seminal vesicles and hypothalamus-pituitary axis of UCh rats.
Resumo:
We investigated whether veratrine (5 μl, 10 ng/kg) injected into the mouse extensor digitorum longus (EDL) (fast-twitch) and soleus (SOL) (slow-twitch) muscles provokes distinctive ultrastructural disturbances 15, 30 and 60 min later. The mitochondria in SOL were affected earlier (within 15 min) than in EDL. Swelling of the sarcoplasmic reticulum terminal cisternae was more marked in EDL than in SOL and caused distortion of sarcomeres so that fragmentation of myofilaments was more pronounced in EDL. Hypercontracted sarcomeres were seen mainly in SOL and veratrine caused infoldings of the sarcolemma only in this muscle. In both muscles, the T-tubules remained unaffected and by 60 min after veratrine most of the above alterations had reverted to normal. Pretreatment with tetrodotoxin prevented the alterations induced by veratrine. This suggests that most of the alterations resulted from the enhanced influx of Na+ into muscle fibers. These results emphasize the importance of considering the type of muscle when studying the action of myotoxic agents.
Resumo:
Both hind foot pads of BALB/c and B10.A mice strains, were inoculated with a fungal suspension of Lacazia loboi obtained from a Jorge Lobo's disease patient. The suspension had 9 × 105 cells/ml and its viability index was 45%. The animals were sacrificed at different time periods varying from 24 h to 18 months after inoculation. The BALB/c mice developed an extensive granulomatous infiltrate, similar to the disease in humans, that progressively evolved. The number of fungal elements also increased as the disease progressed, and after the seventh month of inoculation, macroscopic changes of the foot pads were evident. Although the B10.A mice developed an exuberant granulomatous infiltrate, macroscopic changes were not detected. The number of fungal cells in the infected tissues increased in number, but they were lower then the numbers found in the BALB/c strain. The viability indexes were also lower for the B10.A strain. Considering the histopathological findings, the presence of macroscopic changes and the great amount of fungal cells in the infected tissues, the authors concluded that the BALB/c mice strain was more susceptible to L. loboi infection than the B10.A strain.
Resumo:
In the present study we compared the immunological reactions between Rhipicephalus sanguineus tick-infested susceptible (dogs and mice) and tick-resistant hosts (guinea pigs), elucidating some of the components of efficient protective responses against ticks. We found that T-cells from guinea pigs infested with adult ticks proliferate vigorously in the presence of concanavalin A (ConA), whereas ConA-induced cell proliferation of tick-infested mice and dogs was significantly decreased at 43.1 and 94.0%, respectively, compared to non-infested controls. Moreover, cells from mice and dogs submitted to one or three successive infestations did not exhibit a T-cell proliferative response to tick antigens, whilst cells from thrice tick-infested guinea pigs, when cultured with either a tick extract or tick saliva, displayed a significant increase in cell proliferation. Also, we evaluated the response of tick-infested mice to a cutaneous hypersensitivity test induced by a tick extract. Tick-infested mice developed a significant immediate reaction, whereby a 29.9% increase in the footpad thickness was observed. No delayed-type hypersensitivity (DTH) reaction was detected. Finally, the differential cell count at the tick attachment site in repeatedly infested mice exhibited a 6.6- and 4.1-fold increase in the percentage of eosinophils and neutrophils, respectively, compared to non-infested animals, while a decrease of 77.0-40.9 in the percentage of mononuclear cells was observed. The results of the cutaneous hypersensitivity test and the cellular counts at the tick feeding site for mice support the view that tick-infested mice develop an immune response to R. sanguineus ticks very similar to dogs, the natural host of this species of tick, but very different from guinea pigs (resistant host), which develop a DTH reaction in addition to a basophil and mononuclear cell infiltration at the tick-attachment site. In conclusion, saliva introduced during tick infestations reduces the ability of a susceptible animal host to respond to tick antigens that could stimulate a protective immune response. As a consequence, the animals present a lack of DTH response and disturbed cellular migration to tick feeding site, which can represent a deficient response against ticks. © 2003 Elsevier B.V. All rights reserved.
Resumo:
Purpose: This study compared the effect of two postpolymerization heat treatments on the cytotoxicity of three denture base resins on L929 cells using 3H-thymidine incorporation and MTT assays. Materials and Methods: Sample disks of Lucitone 550, QC 20, and Acron MC resins were fabricated under aseptic conditions and stored in distilled water at 37°C for 48 hours. Specimens were then divided into three groups: (1) heat treated in microwave oven for 3 minutes at 500 W; (2) heat treated in water bath at 55°C for 60 minutes; and (3) no heat treatment. Eluates were prepared by placing three disks into a sterile glass vial with 9 mL of Eagle's medium and incubating at 37°C for 24 hours. The cytotoxic effect from the eluates was evaluated using the 3H-thymidine incorporation and MTT assays, which reflect DNA synthesis levels and cell metabolism, respectively. Results: The components leached from the resins were cytotoxic to L929 cells when 3H- thymidine incorporation assay was employed. In contrast, eluates from all resins revealed noncytotoxic effects as measured by MTT assay. For both MTT assay and 3H-thymidine incorporation, the heat treatments did not decrease the cytotoxicity of the materials tested. Conclusion: Resins were graded by 3H-thymidine incorporation assay as slightly cytotoxic and by MTT assay as noncytotoxic. Cytotoxicity of the denture base materials was not influenced by microwave or water bath heat treatment.
Resumo:
A DNA vaccine based on the heat-shock protein 65 Mycobacterium leprae gene (pHSP65) presented a prophylactic and therapeutic effect in an experimental model of tuberculosis. In this paper, we addressed the question of which protective mechanisms are activated in Mycobacterium tuberculosis-infected mice after immune therapy with pHSP65. We evaluated activation of the cellular immune response in the lungs of infected mice 30 days after infection (initiation of immune therapy) and in those of uninfected mice. After 70 days (end of immune therapy), the immune responses of infected untreated mice, infected pHSP65-treated mice and infected pCDNA3-treated mice were also evaluated. Our results show that the most significant effect of pHSP65 was the stimulation of CD8+ lung cell activation, interferon-γ recovery and reduction of lung injury. There was also partial restoration of the production of tumour necrosis factor-α. Treatment with pcDNA3 vector also induced an immune stimulatory effect. However, only infected pHSP65-treated mice were able to produce significant levels of interferon-γ and to restrict the growth of bacilli.
Resumo:
In this study we investigated the effect of β-glucan derived from Saccharomyces cerevisiae on fungicidal activity, cytokine production and natural killer activity. Spleen and peritoneal cells from female C57BL/6 mice, previously injected (24 or 48 h) with 20 or 100 μg of glucan by i.p. route, were assayed. In vivo β-glucan administration primed spleen cells for a higher production of IL-12 and TNF-α when S. aureus was used as a stimulus. In addition, β-glucan increased NK spleen cells activity against YAC target cells. Some immunomodulatory activities not yet described for β-glucan were observed in this work. © 2005 Institute of Physiology, Academy of Sciences of the Czech Republic.
Resumo:
Several studies have been conducted in the last decades aiming to obtain an anti-canies vaccine, however some studies have demonstrated cross reactivity between Streptococcus mutans surface antigens and the human cardiac tissue. In this work, the reactivity of five anti-Streptococcus mutans monoclonal antibodies (MoAb) (24A, 56G, G8, E8 and F6) was tested against oral streptococci, cardiac antigens and skeletal and cardiac myosins, aiming to evaluate the specificity of these MoAb. The hybrid producers of immunoglobulins of the IgG 2b class were cloned by limit dilution and expanded in vivo. MoAb were tested by ELISA. The hybrid 24A reacted with S. mutans CCT 1910, S. salivarius CCT 0365 and S. pyogenes T23. No reactivity difference was observed among the tested species. Cross reactivity with heart and cardiac myosin was not confirmed and only reaction with myosin of skeletal muscle was observed (p = 0.0381). The hybrid 56G reacted with all the tested microorganisms and there was statistically significant difference between S. mutans and S. pyogenes T23 (p < 0.001). This hybrid also reacted with myosin of skeletal muscle (p = 0.0095). C8, E8 and F6 presented low reactivity against oral streptococci strains and no reactivity against cardiac antigens. The data of this study showed that the 24A and 56G anti-S. mutans MoAb presented reactivity with S. pyogenes and S. salivarius, reinforcing the occurrence of common antigens between these species. The tested MoAb presented low cross-reactivity with myosin of skeletal muscle, but anti-heart activity could not be confirmed.
Resumo:
The eukaryotic translation initiation factor 5A (eIF5A) undergoes a specific post-translational modification called hypusination. This modification is required for the functionality of this protein. The compound N1-guanyl-1,7-diaminoheptane (GC7) is a potent and selective inhibitor of deoxyhypusine synthase, which catalyses the first step of eIF5A hypusination process. In the present study, the effects of GC7 on cell death were investigated using two cell lines: melan-a murine melanocytes and Tm5 marine melanoma. In vitro treatment with GC7 increased by 3-fold the number of cells presenting DNA fragmentation in Tm5 cells. Exposure to GC7 also decreased viability to both cell lines. This study also describes, for the first time, the in vivo antitumour effect of GC7, as indicated by impaired melanoma growth in C57BL/6 mice. Copyright © 2006 John Wiley & Sons, Ltd.
Resumo:
Membrane fusion is an essential step in the entry of enveloped viruses into their host cells triggered by conformational changes in viral glycoproteins. We have demonstrated previously that modification of vesicular stomatitis virus (VSV) with diethylpyrocarbonate (DEPC) abolished conformational changes on VSV glycoprotein and the fusion reaction catalyzed by the virus. In the present study, we evaluated whether treatment with DEPC was able to inactivate the virus. Infectivity and viral replication were abolished by viral treatment with 0.5 mM DEPC. Mortality profile and inflammatory response in the central nervous system indicated that G protein modification with DEPC eliminates the ability of the virus to cause disease. In addition, DEPC treatment did not alter the conformational integrity of surface proteins of inactivated VSV as demonstrated by transmission electron microscopy and competitive ELISA. Taken together, our results suggest a potential use of histidine (His) modification to the development of a new process of viral inactivation based on fusion inhibition. © 2006 Elsevier B.V. All rights reserved.
Resumo:
The hypothalamic-pituitary-adrenal (HPA) axis is important in regulating energy metabolism and in mediating responses to stressors, including increasing energy availability during physical exercise. In addition, glucocorticoids act directly on the central nervous system and influence behavior, including locomotor activity. To explore potential changes in the HPA axis as animals evolve higher voluntary activity levels, we characterized plasma corticosterone (CORT) concentrations and adrenal mass in four replicate lines of house mice that had been selectively bred for high voluntary wheel running (HR lines) for 34 generations and in four nonselected control (C) lines. We determined CORT concentrations under baseline conditions and immediately after exposure to a novel stressor (40 min of physical restraint) in mice that were housed without access to wheels. Resting daytime CORT concentrations were approximately twice as high in HR as in C mice for both sexes. Physical restraint increased CORT to similar concentrations in HR and C mice; consequently, the proportional response to restraint was smaller in HR than in C animals. Adrenal mass did not significantly differ between HR and C mice. Females had significantly higher baseline and postrestraint CORT concentrations and significantly larger adrenal glands than males in both HR and C lines. Replicate lines showed significant variation in body mass, length, baseline CORT concentrations, and postrestraint CORT concentrations in one or both sexes. Among lines, both body mass and length were significantly negatively correlated with baseline CORT concentrations, suggesting that CORT suppresses growth. Our results suggest that selection for increased locomotor activity has caused correlated changes in the HPA axis, resulting in higher baseline CORT concentrations and, possibly, reduced stress responsiveness and a lower growth rate. © 2007 by The University of Chicago. All rights reserved.
Resumo:
The suprachiasmatic nucleus, an essential diencephalic component of the circadian timing system, plays a role in the generation and modulation of behavioral and neuroendocrine rhythms in mammals. Its cytoarchitecture, neurochemical and hodological characteristics have been investigated in various mammalian species, particularly in rodents. In most species, two subdivisions, based on these aspects and considered to reflect functional specialization within the nucleus, can be recognized. Many studies reveal a typical dense innervation by serotonergic fibers in this nucleus, mainly in the ventromedial area, overlapping the retinal afferents. However, a different pattern occurs in certain animals, which lead us to investigate the distribution of serotonergic afferents in the suprachiasmatic nucleus of the Capuchin monkey, Cebus apella, compared to the marmoset, Callithrix jacchus, and two Rattus norvegicus lines (Long Evans and Wistar), and to reported findings for other mammalian species. Our morphometric data show the volume and length of the suprachiasmatic nucleus along the rostrocaudal axis to be greatest in C. apella > C. jacchus > Long Evans ≥ Wistar rats, in agreement with their body sizes. In C. apella, however, the serotonergic terminals occupy only some 10% of the nucleus' area, less than the 25% seen in the marmoset and rats. The distribution of the serotonergic fibers in C. apella does not follow the characteristic ventral organization pattern seen in the rodents. These findings raise questions concerning the intrinsic organization of the nucleus, as well as regarding the functional relationship between serotonergic input and retinal afferents in this diurnal species. © 2007 Elsevier B.V. All rights reserved.
Resumo:
BACKGROUND: Annexin 1 is a 37-kDa protein that has complex intra- and extracellular effects. To discover whether the absence of this protein alters bone development, we monitored this event in the annexin-A1 null mice in comparison with littermate wild-type controls. METHODS: Radiographic and densitometry methods were used for the assessment of bone in annexin-A1 null mice at a gross level. We used whole-skeleton staining, histological analysis, and Western blotting techniques to monitor changes at the tissue and cellular levels. RESULTS: There were no gross differences in the appendicular skeleton between the genotypes, but an anomalous development of the skull was observed in the annexin-A1 null mice. This was characterized in the newborn annexin-A1 null animals by a delayed intramembranous ossification of the skull, incomplete fusion of the interfrontal suture and palatine bone, and the presence of an abnormal suture structure. The annexin-A1 gene was shown to be active in osteocytes during this phase and COX-2 was abundantly expressed in cartilage and bone taken from annexin-A1 null mice. CONCLUSIONS: Expression of the annexin-A1 gene is important for the normal development of the skull in mice, possibly through the regulation of osteoblast differentiation and a secondary effect on the expression of components of the cPLA2-COX-2 system. © 2007 Wiley-Liss, Inc.
Resumo:
This study aimed to evaluate whether experimental Chagas disease in acute phase under benznidazole therapy can cause DNA damage in peripheral blood, liver, heart, and spleen cells or induce nitric oxide synthesis in spleen cells. Twenty Balb/c mice were distributed into four groups: control (non-infected animals); Trypanosoma cruzi infected; T. cruzi infected and submitted to benznidazole therapy; and only treated with benznidazole. The results obtained with the single cell gel (comet) assay showed that T. cruzi was able induce DNA damage in heart cells of both benznidazole treated or untreated infected mice. Similarly, T. cruzi infected animals showed an increase of DNA lesions in spleen cells. Regarding nitric oxide synthesis, statistically significant differences (p < 0.05) were observed in all experimental groups compared to negative control, the strongest effect observed in the T. cruzi infected group. Taken together, these results indicate that T. cruzi may increase the level of DNA damage in mice heart and spleen cells. Probably, nitric oxide plays an important role in DNA damaging whereas benznidazole was able to minimize induced T. cruzi genotoxic effects in spleen cells. © 2006 Elsevier Inc. All rights reserved.