180 resultados para finite-element-analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective. This study aimed to investigate the influence of restoration thickness to the fracture resistance of adhesively bonded Lava (TM) Ultimate CAD/CAM, a Resin Nano Ceramic(RNC), and IPS e. max CAD ceramic.Methods. Polished Lava (TM) Ultimate CAD/CAM (Group L), sandblasted Lava (TM) Ultimate CAD/CAM (Group LS), and sandblasted IPS e.max CAD (Group ES) discs (n=8, phi=10 mm) with a thickness of respectively 0.5 mm, 1.0 mm, 1.5 mm, 2.0 mm, and 3.0 mm were cemented to corresponding epoxy supporting discs, achieving a final thickness of 3.5 mm. All the 120 specimens were loaded with a universal testing machine at a crosshead speed of 1 mm/min. The load (N) at failure was recorded as fracture resistance. The stress distribution for 0.5 mm restorative discs of each group was analyzed by Finite Element Analysis (FEA). The results of facture resistances were analyzed by one-way ANOVA and regression.Results. For the same thickness of testing discs, the fracture resistance of Group L was always significantly lower than the other two groups. The 0.5 mm discs in Group L resulted in the lowest value of 1028 (112) N. There was no significant difference between Group LS and Group ES when the restoration thickness ranged between 1.0 mm and 2.0 mm. There was a linear relation between fracture resistance and restoration thickness in Group L (R = 0.621, P < 0.001) and in Group ES (R = 0.854, P < 0.001). FEA showed a compressive permanent damage in all groups.Significance. The materials tested in this in vitro study with the thickness above 0.5 mm could afford the normal bite force. When Lava Ultimate CAD/CAM is used, sandblasting is suggested to get a better bonding. (C) 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Topological optimization problems based on stress criteria are solved using two techniques in this paper. The first technique is the conventional Evolutionary Structural Optimization (ESO), which is known as hard kill, because the material is discretely removed; that is, the elements under low stress that are being inefficiently utilized have their constitutive matrix has suddenly reduced. The second technique, proposed in a previous paper, is a variant of the ESO procedure and is called Smooth ESO (SESO), which is based on the philosophy that if an element is not really necessary for the structure, its contribution to the structural stiffness will gradually diminish until it no longer influences the structure; its removal is thus performed smoothly. This procedure is known as "soft-kill"; that is, not all of the elements removed from the structure using the ESO criterion are discarded. Thus, the elements returned to the structure must provide a good conditioning system that will be resolved in the next iteration, and they are considered important to the optimization process. To evaluate elasticity problems numerically, finite element analysis is applied, but instead of using conventional quadrilateral finite elements, a plane-stress triangular finite element was implemented with high-order modes for solving complex geometric problems. A number of typical examples demonstrate that the proposed approach is effective for solving problems of bi-dimensional elasticity. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, the automotive industry is working to optimize the design of engines, in order to reduce the fuel consumption with acceptable efficiency ratio. This undergraduate thesis is aimed at perform a kinematic/dynamic analysis of a slider-crank mechanism that is part of a four stroke internal combustion engine, the same engine that was used in the analysis described by Montazersadhd and Fatemi (2007). Two algorithms were developed based on Kane’s method to calculate velocities and accelerations of the mechanism bodies, and provide the acting forces at connecting rod joints. A SimMechanics model was developed to simulate the engine, and monitoring the same parameters that were calculated with the algorithms. The results obtained with both approaches were satisfactory and showed good agreement with the values provided by Montazersadhd and Fatemi (2007). The obtained results showed that the axial component of the rod joint efforts was caused by the pressure exerted on the piston head,whereas the radial component was related with the action of inertia loads. Besides, this thesis presents a connecting rod assembly mesh that is going to be used for static and fatigue finite element analysis in the future

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing search for better performance at the automotive industry, especially on the matter of fuel consumption, caused a progressive evolution of industrial technology. For the wheel this study is based on the try of reducing mass and decreasing the moment of inertia, characteristics that directly reflect on the performance parameter, as consumption and acceleration, so that it also is effective on the growth of the profit margin, since it reduces the costs of the locomotion. In this paper will be applied the Finite Element Analysis to explain the wheel behavior and identify ways to improve the performance. To the analyze it will be simulated a test condition established by ABNT NBR 6751:2009 foreseeing a possible collapse through general yielding and fatigue. The load here presented results from the equation presented on the norms and in the datas provided by the manufacturer

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Odontologia Restauradora - ICT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Odontologia Restauradora - ICT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the effect of occlusal contact area for loading on the cuspal defection and stress distribution in a first premolar restored with a high elastic modulus restorative material. The Rhinoceros 4.0 software was used for modeling the three-dimensional geometries of dental and periodontal structures and the inlay restoration. Thus, two different models, intact and restored teeth with three occlusal contact areas, 0.1, 0.5 and 0.75 mm(2), on enamel at the occlusal surface of buccal and lingual cusps. Finite element analysis (FEA) was performed with the program ANSYS (Workbench 13.0), which generated a mesh with tetrahedral elements with greater refinement in the regions of interest, and was constrained at the bases of cortical and trabecular bone in all axis and loaded with 100 N normal to each contact area. To analysis of maximum principal stress, the smaller occlusal contact area showed greater compressive stress in region of load application for both the intact and inlay restored tooth. However, tensile stresses at the occlusal isthmus were similar for all three tested occlusal contact areas (60 MPa). To displacement of the cusps was higher for teeth with inlay (0.46-0.48 mm). For intact teeth, the smaller contact area showed greater displacement (0.10 mm). For teeth with inlays, the displacement of the cusps were similar in all types of occlusal area. Cuspal displacement was higher in the restored tooth when compared to the intact tooth, but there were no significant variations even with changes in the occlusal contact area. RELEVANCE CLINICAL: Occlusal contacts have a great influence on the positioning of teeth being able to maintain the position and stability of the mandible. Axial loads would be able to generate more uniform stress at the root presenting a greater concentration of load application in the point and the occlusal surface. Thus, is necessary to analyze the relationship between these occlusal contacts as dental wear and subsequent occlusal interferences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to analyze the biomechanical interactions in bone tissue between short implants and implant-supported crowns with different heights. Two models were made using the programs InVesalius 3.0, Rhinoceros 4.0 and Solidworks 2010. The models were established from a bone block with the short implant (3.75 x 8.5 mm) with geometry Morse taper connection (MT). The height of the crown (cemented) was set at 10.0 mm and 15.00 mm. The models were processed by programs and 10 NEiNastran Femap 10.0. The force applied was 200N (vertical) and 100N (oblique). The results were plotted on maps Voltage Maximum Principal. Statistical analysis was performed using ANOVA. The results showed that the increase in crown height, increased stress concentration in the crown of 15 mm under oblique loading (p <0.001), the oblique loading has significantly expanded the area of stress concentration (p <0.001). Conclusion:the increase of the crown increased the stress concentration, being statistically significant for short implants Morse taper. The mesial and distal region had the highest concentration of stresses under oblique loading. The oblique loading was more harmful when compared with axial loading, being statistically significant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate the biomechanical behavior of different implant connection types, by means of three-dimensional finite element analysis. 3 Three-dimensional models were created with a graphic modeling software: SolidWorks 2006 and Rhinoceros 4.0, and InVesalius (CTI, São Paulo, Brasil), the bone was obtained by computerized tomography of a sagittal section of the molar region. The model was composed by bone block with an implant (4 x 10 mm) (Conexão Sistemas de Prótese, São Paulo), with different implant connections: external hex, internal hex and Morse-taper with the corresponding prosthetic component Ucla or Morse-taper abutment. The Three-dimensional models were transferred to finite element software Femap 10.0 (Siemens PLM Software Inc., CA, USA), to generate a mesh, boundary conditions and loading. An axial (200N) and oblique load (100N) was applied on the occlusal surface of the crowns. Analyses were performed using the finite element software NEiNastran 9.0 (Noran Engineering, Inc., USA) and transferred to the Femap 10.0 to obtain the results; after the results were visualized using von Mises stress maps and Maximum stress principal. The results showed the stress distribution was similar between models, with a little superiority of Morse-taper connection. It was concluded that: the three connection types were biomechanical viable; The Morse-taper connection presented the better internal stress distribution; there was not significant biomechanical differences on the bone.